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Abstract

Accurate measurements of atmospheric flows at metre-scale resolution 
are essential for many sustainability applications, including optimal 
design of wind and solar farms, navigation and control of air flows 
in the built environment, monitoring of environmental phenomena 
such as wildfires and air pollution dispersal, and data assimilation into 
weather and climate models. Measurement of the relevant multiscale 
wind flows is inherently challenged by the optical transparency of 
the wind. This Perspective article explores new ways in which physics 
can be leveraged to ‘see’ environmental flows non-intrusively, that is, 
without the need to place measurement instruments directly in the flows 
of interest. Specifically, although wind itself is transparent, its effect 
can be seen in the motion of objects embedded in the environment and 
subjected to wind — swaying trees and flapping flags are commonly 
encountered examples. We survey emerging efforts to accomplish visual 
anemometry, the task of quantitatively inferring local wind conditions 
on the basis of the physics of observed flow–structure interactions. 
Approaches based on first-principles physics as well as data-driven, 
machine learning methods will be described, and remaining obstacles 
to fully generalizable visual anemometry are discussed.
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mechanics of urban canopies34, plant canopies13,35, forest canopies36 
and aquatic canopies37.

We begin with an introduction to the relevant physics governing 
flow–structure interactions of the type expected to occur in wind flows. 
We then review current approaches towards visual anemometry, both 
physics-based and data-driven. We then highlight remaining challenges 
to successful realization of this method. We conclude by identifying 
diverse ways in which the physics community can contribute their 
disciplinary expertise to the development of this emerging field.

Principles of flow–structure interactions
Physics of vortex-induced vibration
Relative motion between a solid body and a surrounding fluid (Fig. 1a) cre-
ates lift forces, FL, and drag forces, FD, that act on the body (Fig. 1b). The lift 
force acts in the transverse direction of the fluid flow and has magnitude

F
C

ρU A=
2

, (1)L
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in which ρ is the fluid density, U  is the incoming fluid speed, A is the 
relevant body area and CL is the dimensionless lift coefficient. The drag 
force acts in the streamwise direction of the fluid flow, with magnitude

F
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2

, (2)D
D 2

in which CD is the dimensionless drag coefficient. The magnitude of the 
lift and drag coefficients in an incompressible flow depends on 
the relevant Reynolds number (Re) of the body, in addition to the 
body shape and orientation in the flow. Per convention, Re is defined 
as ρ µRe = UL/ , in which L is the relevant body length scale and µ is the 
dynamic viscosity of the fluid. Although CL and CD are nearly constant 
and on the order of 0.1–1 for rigid, bluff bodies at ≫Re 1, these coef-
ficients can change and often decrease considerably with increasing 
flow speed, as discussed subsequently. Lift and drag forces are respon-
sible for momentum exchange between the fluid (such as the surround-
ing air) and the body. When the body motion is coincident with one or 
both forces, the body extracts kinetic energy from the fluid.

A simple example of this energy transference (or harvesting) 
occurs when a bluff body is placed in a steady (that is, time-independent) 
flow. Across a wide range of flow conditions, these bodies generate 
an unsteady (that is, time-varying) wake characterized by periodic 
vortex shedding — the formation of spatially compact regions of rotat-
ing fluid downstream of the body — at formation frequency fo. This 
vortex formation results in a spatially uneven pressure distribution on 
the body. For a body with a single degree of freedom, such as an elastic 
cantilever that is allowed to move in the transverse direction (Fig. 1a), 
this unsteady forcing causes the structure to respond by oscillating 
with so-called vortex-induced vibrations (VIVs). When the forcing 
frequency, fo, from the vortex shedding approaches the natural fre-
quency, fN, of the structure, the dynamics of the two systems can 
become coupled in a state of synchronization or ‘lock-in.’ This resonant 
state is characterized by a considerable transfer of kinetic energy from 
the fluid to the structure resulting in large-amplitude oscillations. 
In this context, ‘large amplitude’ means that the oscillations are com-
parable to the characteristic length scale of the body cross-section. 
This mechanism is responsible for phenomena such as ‘singing’ wires 
and for the notable failure of the Ferrybridge cooling towers38 in 
England. VIVs are one of many flavours of flow-induced vibrations, 

Introduction
The fate of life on Earth depends on physical processes that are macro
scopic, but nonetheless imperceptible to the naked eye. Specifically, 
the movement of air masses at local scales mediates essential gas 
exchanges between the atmosphere and the terrestrial and aquatic eco-
systems that lie underneath1–8. This flow of air is also a principal means 
of transportation for life ranging from bacteria9 and seed spores10–14 
to animals that migrate seasonally across the globe15–17. Engineering 
technologies with the promise to protect those same ecosystems are 
also dependent on the wind. The functional reliance of technologies 
such as wind turbines is a straightforward example18–20; however, it 
may be less appreciated that the performance of solar energy farms 
is also determined by local wind conditions21,22. Boxes 1–3 provide fur-
ther discussion of the diverse roles of wind flows in environmental 
sustainability applications.

Given this broad and important role of the wind for current 
and future environmental sustainability, it is remarkable that there 
are relatively few tools to quantify the wind at the length scales and 
timescales relevant to many of the applications identified earlier. 
Such measurements are inherently limited by the optical transpar-
ency of the air. To date, the most common solutions to this limitation 
require introducing an engineered, physical object into the flow whose 
interaction with the wind can be detected visually as a qualitative 
indicator (a windsock or wind vane23, for example) or alternatively, 
by converting the physical interaction of the object and the wind into 
a calibrated, quantitative signal (using a cup anemometer or light 
detection and ranging system24–26, for example). Measurements using 
these approaches are all fundamentally constrained by the require-
ment that the measurement device must be in close proximity to the 
measurement domain of interest.

This Perspective article explores an emerging alternative approach 
with the potential to enable multiscale, spatiotemporally resolved 
measurements of the wind by taking advantage of trillions of wind 
indicators already covering most of the land on Earth. These indicators 
include naturally occurring structures, such as the estimated three tril-
lion trees on land27, and engineered structures, such as the millions of 
kilometres of electrical power lines28. Because none of these objects is 
perfectly rigid, they move in response to local wind conditions in ways 
that could potentially be used to infer incident wind speed and direc-
tion. We call this technique visual anemometry, reflecting the oppor-
tunity to quantify local winds based solely on visual measurements at 
arbitrarily far, line-of-sight distances away from the region of interest.

As a qualitative tool, visual anemometry has a long history and 
was first popularized in 1805 with the eponymous scale introduced by 
Francis Beaufort, a British naval officer, to standardize assessments of 
the effect of wind loading on ship sails. Subsequently adapted to wind 
over land, the Beaufort scale categorizes wind speed according to its 
qualitative effect on objects in the environment, from the gentle flut-
tering of leaves in low winds to the swaying motion of entire trees in 
high winds29,30. Companion scales have subsequently been developed to 
categorize higher wind speeds, such as the Fujita scale for tornadoes31; 
time-averaged wind speeds over longer periods are categorized by 
the Griggs–Putnam index32. The distinct objective of this Perspective 
article is to explore the convergence of physics and data science to 
achieve visual anemometry that is quantitative in its assessment of 
the observed flow–structure interactions and generalizable to any 
structures that exhibit a visible response in the presence of wind. The 
content of this Perspective article is complemented by previous surveys 
of flow anemometry more generally33, as well as reviews of the fluid 
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Box 1

Visual anemometry for renewable energy
To achieve net-zero greenhouse gas emissions in the USA by 2050, 
it is estimated that increases in wind and solar capacity of 6–28× 
and 9–39×, respectively, are required150; similarly large increases 
in renewable energy are needed globally to meet decarbonization 
targets. This unprecedented scale-up will require widespread 
proliferation of wind and solar generation in geographic regions 
where renewables have not previously been sited20,151. Diversified 
siting of renewable energy infrastructure creates two main 
challenges related to wind measurements. First, wind patterns 
are more uncertain in new locations that have shorter historical 
observation records. Second, new sites may have lower quality 
wind, with characteristics that are more difficult to incorporate into 
existing forecasting methods, such as terrain complexity105,106,152,153 
and variable land use (such as urban environments).

Historically, two parallel approaches have been used for wind 
field estimation for renewable energy resource assessment. The 
first is to predict the winds in the atmosphere via numerical weather 
forecasting models on the basis of an approximate form of the 
governing equations154. These models require parameterizations to 
represent complex processes that cannot be directly resolved with 
available computing resources, such as turbulence, convection 
and clouds. Although numerical weather models provide detailed 
spatial and temporal coverage, the approximations in the models 
result in uncertainties in wind forecasts155, especially near the 
surface of the Earth where turbulence is higher than aloft. In 
the second approach, in situ sensors such as meteorological (MET) 
masts and light detection and ranging (LiDAR) systems are used to 
observe the wind with few, if any, assumptions required regarding 
the nature of the wind dynamics33,105,156,157. Yet these sensors both are 
relatively high cost and lack spatial coverage. At the intersection 
of these parallel approaches, data assimilation is used to combine 
in situ observations with numerical models158–160, but uncertainties 
remain in locations not covered by the measurements. Visual 
anemometry can provide a third, complementary approach to wind 
field estimation with characteristics similar to in situ observations, 
but with higher spatial coverage. A promising avenue may 

also leverage wind estimates from visual anemometry for data 
assimilation.

As most physical objects to be used for visual anemometry, both 
natural and engineered, exist within tens of metres of the surface of 
the Earth, measurements via visual anemometry directly quantify 
winds near this nominal height (see the figure). Small-scale wind 
generators, such as recently developed vertical-axis wind turbines 
(VAWTs), are designed with hub heights in the order of 10 m (ref. 161), 
making visual anemometry measurements directly applicable to the 
design of those systems. However, utility-scale horizontal axis wind 
turbines (HAWTs) operate at hub heights of 50–200 m and with rotor 
diameters of 80–300 m. For wind measurements made through visual 
anemometry to be used to estimate the power (P) available in winds 
incident to these utility-scale horizontal axis turbines, model-based 
extrapolation methods must be used162. Wind extrapolation to heights 
above a given measurement location is common, as typical weather 
stations also provide wind measurements 10 m above the surface of 
the Earth and surface winds reported by typical weather and climate 
models are also at 10 m.

Solar power production primarily depends on spatiotemporal 
variations in irradiance. Irradiance is driven by known determin
istic variations, such as seasonal and diurnal cycles, as well as 
stochastic variations of atmospheric clouds and aerosols that 
are challenging to predict. Therefore, physics-based irradiance 
forecasts rely on numerical weather prediction163. As noted earlier 
in the context of wind energy, visual anemometry may provide a 
mechanism for improved weather forecasting by increasing the 
availability of wind flow measurements for data assimilation.

Beyond irradiance, the efficiency of solar photovoltaic (PV) 
cells is rated at standard test conditions of one Sun of irradiance 
at an air–mass ratio of 1.5 (that is, sunlight passing obliquely 
through the equivalent of 1.5× the atmospheric length at zenith) 
and a cell temperature of Tcell = 25 °C. Yet PV cells typically 
operate at higher temperatures164. Solar PV efficiency decreases 
by approximately 0.1–0.5% per Kelvin above standard test 
conditions, but the magnitude of degradation is cell-specific165. 
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along with aeroelastic flutter instabilities39 and galloping40,41, both of 
which result from forcing owing to unsteady pitching. Each of these 
response modes is a visually perceptible indication of the local wind 
conditions.

Effects of flexibility and reconfiguration
For relatively rigid structures whose shape does not change owing to 
wind forcing, the scaling in equations (1) and (2), especially the quad-
ratic dependence on wind speed, adequately describes the behaviour 
of aerodynamic forces exerted by the wind. However, many naturally 
occurring structures, especially plants, are highly flexible and thus can 
deform considerably under forcing from external fluid flow (Fig. 1). 
Consequently, for many bodies, their flexural rigidity has an important 
role in determining the fluid forcing42. Because of this flexibility, many 
plants reconfigure their cross-section area and become more stream-
lined in higher speed flows, allowing them to experience a drag force 
with subquadratic dependency on flow speed43. This dependency can 
be expressed as F U∝ V

D
2+ , in which V  is the Vogel exponent42,44–49. Values 

of the Vogel exponent V < 0 capture the deviation from the canonical, 
inertial scaling relation owing to reconfiguration. For example, V = –1 
indicates a regime in which drag scales near linearly with velocity. 
Depending on the mechanics of the reconfigurability, system-specific 
parameterizations have been used to quantify reconfiguration in pre-
vious studies (reviewed elsewhere42). As discussed in the following 
sections, a goal of visual anemometry is to infer the relationship 
between structural response and incident wind without an a priori 
model of reconfiguration dynamics.

Effects of biological adaptation
The preceding discussion of reconfiguration implicitly assumes that the 
reconfiguration of the structure exposed to wind is reversible; in other 
words, that the original configuration of the structure is recovered 
when wind loading is removed. Although this is typically true for engi-
neering structures, provided that they are not stressed beyond the 
limits of elastic deformation, vegetation can exhibit a more complex 
response to wind loading. Specifically, many plants exhibit structural 
remodelling — at a cellular level — in response to wind loading that leads 
to different equilibrium geometries of the vegetation over time50,51. 
Hence, the structure of vegetation can encode the time history of pre-
vious exposure to wind loading. If not properly accounted for, this 
adaptation can potentially confound efforts towards visual anemom-
etry, as two plants of the same species but with different wind-loading 
histories could respond differently to incident wind, if one has grown 
stiffer owing to previous exposure to the wind, for example.

Conversely, by recognizing the occurrence of this phenomenon, 
a type of adaptation known as thigmomorphogenesis52, additional 
information regarding the wind conditions can be beneficially lever-
aged in the task of visual anemometry. For example, the long-term 
deformation of trees has previously been exploited for the estimation 

of average annual wind speeds32 and even for siting of wind turbines53. 
Hence, knowledge of the phenotypic plasticity of a given vegetation 
species (such as its capacity for thigmomorphogenesis) along with 
measurement of its equilibrium structure can complement visual 
observations of the instantaneous flow–structure interactions. The 
following section focuses on the physics governing the flow–structure 
interactions. Strategies to incorporate additional information regard-
ing vegetation species and wind history (such as information inferred 
from the observed equilibrium structure of the vegetation) are 
discussed in the subsequent section on data-driven methods.

Physics-based methods
Dynamics-based methods
Physical objects that are both geometrically slender and mechanically 
stiff have proven the most amenable to direct, first-principles applica-
tion of flow physics to deduce a quantitative relationship between 
object motion and incident wind speed. In these cases, the aerodynamic 
force of the wind on the structure can be estimated as F p A≈wind , in 
which p is the dynamic pressure exerted by the wind on the windward 
face of the structure, the overbar indicates a spatiotemporal average 
and A is the projected area of the corresponding surface. Similar to the 
lift and drag forces described in equations (1) and (2) mentioned earlier, 
the dynamic pressure is linearly proportional to the air density and 
quadratically proportional to the incident wind speed; hence,

F ρU A∝ . (3)wind
2

The structural response to small deformations can be estimated 
by assuming that the elastic restoring force, FE, is linearly proportional 
to the structure deflection δ:

F κδ≈ , (4)E

in which κ is the elastic constant, which depends on the structure geom-
etry and material properties. For cantilevered, slender objects such as 
tree branches, plant stalks or blades of grass, the tip deflection owing 
to spatially uniform wind loading can be modelled using the linear 
Euler–Bernoulli beam theory:

δ
fL

≈
8EI

, (5)
4

in which f is the applied force per unit length L, E is the elastic Young’s 
modulus of the material comprising the structure and I is the area 
moment of inertia. Comparing equations (4) and (5) mentioned earlier, 
the corresponding elastic constant is

κ
L

≈
8EI

. (6)3

To estimate efficiency in field conditions, solar cell manufacturers 
provide a method to approximate the cell temperature on the 
basis of an empirical indicator called the nominal operating cell 
temperature. Wind speed is a required input to this cell temperature 
approximation166. Improving wind estimates increases the accuracy 

of cell temperature and cell efficiency predictions167. Finally, emerging 
research seeks to optimally site and design solar farms to maximize 
passive convective cooling to reduce cell temperature168. Such 
methods require site-specific wind estimates22, which may be 
provided by visual anemometry.

(continued from previous page)
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The balance of aerodynamic force, Fwind, and elastic force, FE, 
provides a relationship between observed structural deflection and 
incident wind speed:

U
δ

ρ
≈

8EI
AL

. (7)3

Each of the parameters on the right-hand side of equation (7) can 
be estimated from visual observation of the structure, with the excep-
tion of the Young’s modulus of the material. Reference54 demonstrated 
the use of single-point calibration to determine the unknown material 
property. Alternatively, computer vision techniques can potentially 
be used to deduce the likely material properties on the basis of librar-
ies of environmentally observed structures and their known material 
properties55,56.

An important limitation of methods based on the preceding analy-
sis is the necessary occurrence of a non-zero time-averaged structural 
deflection owing to the incident wind. As described earlier, the VIVs expe-
rienced by many environmental structures, such as plants57, can exhibit 
a mean deflection that is close to zero, despite significant instantaneous 
deflections. The oscillatory motion of electrical power lines under wind 
loading is another common example; other engineered structures, such 
as telephone poles and radio antennae, can also exhibit nearly symmetric 
structural oscillations in a direction perpendicular to the incident wind28.

Reference58 showed that the dynamic motions associated with 
transverse or streamwise structural oscillations can also be used to 
estimate wind speeds, albeit using a conceptual framework different 
from the quasi-steady force balance that leads to equation (7). In this 

case, the dynamics of the flow–structure interaction are modelled as 
a damped harmonic oscillator:

F t m
δ

t
λ

δ
t

κδ( ) ≈
d
d

+
d
d

+ , (8)wind

2

2

in which m is the structure mass, λ is the damping coefficient of 
the structure and the last term on the right-hand side of the equation 
is the elastic response analysed previously. In principle, any time- 
dependent wind forcing can be represented as a superposition of 
harmonic forcings59 at a spectrum of frequencies:

∑F t
a

a b( ) =
2

+ ( cosnt + sinnt) (9)n

N
n nwind

0
=1

in which an and bn are constants, and the summation includes N modes 
sufficient to approximate the time dependence of the incident wind. 
For harmonic forcing at a single frequency ω, in other words, 
F t F ωt( ) = sinwind 0 , equation (8) has the steady-state solution58:

δ t
F
κ β ζβ

β ωt ζβ ωt( ) =
1

(1 − ) + (2 )
[(1 − )sin( ) − 2 cos( )] , (10)0

2 2
2











in which β is the ratio of the forcing frequency to the natural frequency 
of the structure, and

ζ
λ
κm

=
4

. (11)

Box 2

Visual anemometry for urban airflows
People increasingly live in urban environments. In recognition of 
this important trend, the United Nations Sustainable Development 
Goal 11 focuses on sustainable cities and communities. Air flow in 
urban environments affects the energy efficiency and resilience of 
engineered structures, pollution dispersion and air quality, and the 
future of urban air mobility. Given the broad impacts of urban air 
flow, and the limited fidelity of present observations and predictive 
models, urban air flow represents a grand challenge in environmental 
fluid mechanics169.

Air flow affects the structural resilience and energy efficiency 
of buildings. Design standards incorporate site-specific wind 
characteristics, including extreme wind gusts170, which are difficult 
to measure or numerically model. Urban airflow also affects thermal 
convection in cities, which impacts the energy consumption of  
building heating and cooling systems, and the effectiveness 
of natural ventilation171.

Finally, the design of future aircraft and airspace for urban air 
mobility depends on our ability to predict the turbulent flow within and 
around urban environments172. Safe and reliable transport of people 
and goods requires detailed knowledge of wind gusts and turbulence, 
as contemporary aircraft control methods have less success in 
navigation and object avoidance in uncertain wind environments173.

Flows in urban environments are heterogeneous and complex; 
these traits reduce the accuracy of numerical flow predictions 
and severely limit the accuracy of spatially extrapolated pointwise 
flow field measurements. There is an urgent need for increased 
spatiotemporal coverage of urban air flow measurements169 for both 
validation and uncertainty quantification of numerical models174,175 as 
well as for data assimilation176. Visual anemometry can provide a new 
approach for urban wind field sensing with wide spatial coverage and 
high spatiotemporal resolution (see the figure).
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Inspection of this steady-state solution indicates that the amplitude 
of the structural oscillations is directly proportional to the amplitude of 
the wind forcing. Appealing to the relationship between wind speed 
and forcing in equation (3) mentioned earlier, and with additional alge-
braic manipulation, reference58 shows that, for typical, low levels of 
atmospheric turbulence, that is, if the turbulence intensity Iu is given by

≪I
σ U

U
≡

( )
1, (12)u

then

U
σ δ

I
∝

( )
, (13)

u

in which σ denotes the standard deviation. Field measurements dem-
onstrated that this relationship captures the flow–structure interactions 
of five tree species representing a diversity of morphologies58,60.

As with the preceding mean deflection model, visual anemometry 
based solely on the physics of the time-dependent structural response 

Box 3

Visual anemometry for environmental and ecological processes
Transport, mixing and atmospheric conditions driven by the wind 
are central to numerous environmental and ecological processes. 
Wildfire prediction and mitigation (see the figure, panel a) are notable 
applications in which detailed wind mapping can have a critical role. 
In the USA alone, wildfires have cost an average of $13.4B USD per 
year177,178 in damages in 2017–2022 and are predicted to become even 
more prevalent as warmer and drier conditions, driven by climate 
change, lead to more protracted and active fire seasons179,180. Although 
temperature, humidity and stability conditions are critical contributors 
to the intensity of a wildfire, wind conditions have a leading role 
in determining the speed and direction of the wildfire spread181–183. In 
chaparral ecosystems such as coastal Southern California, the regions 
most exposed to extreme wind events (such as the katabatic Santa Ana 
winds) have been linked to increased fire danger and larger fires184,185.

Prevailing wind conditions and their associated turbulence also 
drive the dispersal of critical scalar quantities (such as heat and mass) 
and particulates central to various ecological and environmental 
processes (see the figure, panel b). Long distance dispersal of seeds14, 
spores186 and pollen187, whether by wind or organisms, is a critical yet 
poorly understood survival strategy11,14,188,189 for species that adapt to 
changing habitats by overcoming geographic isolation10,190,191. Many 
of the world’s most important agricultural grains, including wheat, 
barley, corn and rice, are grasses that are pollinated primarily through 
the wind, owing to their lack of flowering structures192. Although such 
a mechanism is most prevalent for plants located in close proximity — 
within a range of 1 km193, for example — airborne transport and mating 
of taller plants, such as trees, has been documented at distances 
exceeding 10 km12,187,194. Understanding these dynamics is critical for 
ensuring or minimizing cross-pollination between various crops; the 
latter is especially critical to limit contamination from genetically  

modified crops193 in the natural environment. Even propagated 
material that is transported by organisms depends in part on 
wind dynamics for its dispersal. The efficacy of crop treatment by 
pesticides is also directly impacted by local wind conditions195–199 
(see also Herbicide Stewardship and Drift Prevention). Current 
guidelines reflect an inability to precisely quantify the wind flows that 
carry pesticide chemicals, presenting another application of visual 
anemometry with broad impact.

Natural dispersal, convection and mixing by wind have similarly 
been leveraged by humans for various engineering purposes, 
including for pollution dispersal200 and natural ventilation201,202 
(see the figure, panel c). Proper ventilation is necessary to ensure a 
healthy indoor environment, but it comes with a tangible energy cost. 
Ventilation comprises approximately 11% of the nearly 7 quadrillion BTU 
(2 million GWh) and $USD 141 billion spent by commercial buildings 
in the USA alone203. This expenditure does not include the energy 
spent on space heating or cooling, which are both also substantial 
(32% and 8% of energy consumption by commercial buildings in 
the USA, respectively). Natural ventilation presents an efficient and 
largely passive alternative to conventional ventilation approaches. This 
approach uses naturally occurring forcing from wind and/or buoyancy 
to exchange air between the indoors and outdoors through openings 
in a building structure. Although this resource is freely available in 
appropriate climates, it can be challenging to control and predict204,205 
owing to the inherent complexity and variability of the airflow inside 
connected rooms and around the structure206–208. Designing a system 
to adequately take advantage of wind-driven forcing requires detailed 
knowledge of the turbulent wind patterns in and around the building 
across diurnal and seasonal variations209. This represents another 
potentially transformative application of visual anemometry.
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still requires a calibration measurement to determine the constant 
of proportionality in the relationship expressed by equation (13). 
This potentially limits visual anemometry to contexts in which one 
has a priori wind measurements using conventional anemometry 
techniques. To unlock the potential of visual anemometry for global 
coverage, especially in regions where conventional anemometry is 
inaccessible, dynamical models such as those mentioned earlier may 
require augmentation with other approaches.

Energy-based methods
Although the mechanical properties of a structure exposed to wind 
can be difficult to infer on the basis of visual observation of its isolated 
flow–structure interactions, the presence of multiple identical struc-
tures could be leveraged to infer their common properties. Consider, 
for example, the wind incident on two trees aligned in the streamwise 
direction. The discussion in the preceding sections indicates that the 

kinetic energy of each tree is derived from the kinetic energy of the 
incident wind. For instance, for the upstream tree

ηKE ≈ KE , (14)T wind1

in which KET1
 is the kinetic energy of the upstream tree, KEwind is the 

kinetic energy of the wind incident on the front of the canopy and η is 
a constant factor that quantifies the energy transfer from the wind to 
the trees. This factor captures the mechanical properties of the tree, 
such as its inertia, elasticity and damping. A value η = 0 would indicate 
no energy transfer from the incident wind to the tree, whereas a value 
η = 1 would indicate the (unphysical) upper bound of perfect energy 
transfer from the wind to the tree. In practice, the maximum value of 
the energy transfer coefficient η is much less than 1. For example, in 
steady incompressible flow, the maximum theoretical value is given 
by the Betz limit of 59.3% (ref. 61). Unsteady flows can exhibit higher 
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energy transfer efficiencies in theory, although empirical observations 
suggest that values less than the Betz limit are typical62.

If the second, downwind tree is set into motion solely by remaining 
kinetic energy in the wake of the first tree, that is, KE ≡ KE − KEwake wind T1 1

, 
then we can estimate the kinetic energy of the second tree as

η η ηKE ≈ KE ≈ (1 − )KE . (15)T wake wind2 1

To be sure, this approximation assumes that no energy was dis-
sipated in the interaction with the upstream tree (that is, that there is 
negligible damping on the timescale of wind advection), and it assumes 
that the upstream wind does not also directly affect the dynamics 
of the second, downwind tree, as might occur via turbulent sweeps into 
the top or sides of the canopy24,35,63,64 or a redistribution of the kinetic 
energy within its frequency spectrum65, for example. In other words, 
this approximation depends inherently on the level of turbulence in 
the incident wind and on the surrounding topography.

We postulate that two trees (or other objects exposed to the wind) 
with identical structural properties are characterized by the same value 
of energy transfer efficiency η. With this ansatz, one can eliminate the 
unknown structural properties η by comparing the relative magnitude 
of the motion of the two trees:

η

KE

KE
≈

1
1 −

, (16)
T

T

1

2

or,

η ≈ 1 −
KE

KE
. (17)

T

T

2

1

The kinetic energy of each structure can be estimated as 
proportional to the average of the square of its component speeds. 
Hence,

η
U

U
≈ 1 − , (18)

T
2

T
2

2

1





in which the carat denotes a spatial average of the structure motion. 
The model in equation (18) could be enhanced by incorporating more 
realistic functional dependencies of the parameter η, for example, 
to reflect possible sensitivity of the kinetic energy transfer efficiency to 
the wind speed (such as occurs via structure reconfiguration as dis-
cussed in the section on Effects of flexibility and reconfiguration) and 
background turbulence levels. However, these additions would poten-
tially re-introduce the need for local calibration measurements. Even 
in its current form, equation (18) illustrates the potential for canopies 
comprising an array of similar structures to be especially useful for 
visual anemometry.

An additional physical phenomenon that can influence the accuracy 
of visual anemometry using the preceding energy-based methods is the 
presence of ‘honami’, that is, waves of wind-induced structural displace-
ment that can propagate through a canopy66,67. For canopy elements in 
close proximity, mechanical contact between upstream and downstream 
elements during wave propagation could lead to additional kinetic 
energy transfer between canopy elements. Because this transfer of 
kinetic energy can be two way — with energy transferred from upstream 
canopy elements to downstream or vice versa — the upstream energy 

transfer could lead to underestimation of the wind kinetic energy trans-
ferred to downstream canopy elements and thereby underestimate η. 
For a uniform canopy, this should manifest as a systematic bias in the 
measurements. If so, then this artefact should be straightforward for a 
data-driven method to compensate on the basis of training data 
(as discussed in the sections on Data-driven methods and on Outlook).

Each of the aforementioned physics-based methods is funda-
mentally limited by the fidelity with which 2D visual observations of 
the vegetation motion can accurately quantify the actual 3D canopy 
kinematics47,68–70. A top view of the canopy provides a projection of the 
two dominant wind directions (that is, streamwise and cross-wind), 
assuming that vertical wind flows are negligible, as in canonical hor-
izontally homogeneous atmospheric surface layer flows64. Hence, 
visual anemometry from this perspective is less sensitive to out-of-
plane canopy motion that would cause the canopy kinetic energy to 
be underestimated. Moreover, because the vegetation is cantilevered 
at the ground, the portion of the canopy that is visible from overhead 
will typically exhibit the most significant displacements. This feature 
of overhead measurements becomes especially important for visual 
anemometry conducted from distant vantage points such as aircraft or 
satellites (as discussed further in the section on Outlook). The overhead 
perspective is also especially useful for inference of wind direction, 
which can be a desired output of visual anemometry irrespective of 
quantitative measurements of wind speeds.

Despite these advantages of overhead views of flow–structure 
interactions, many data sets of interest will necessarily be collected 
from ground-level perspectives, in which the canopy is viewed from the 
side. In these cases, visual anemometry can only capture the projection 
of the wind in the plane perpendicular to the optical axis. Moreover, the 
wind associated with the observed canopy motions will be primarily 
the wind at the lateral sides of the canopy, as that is the primary visible 
interface between the canopy and the surrounding wind from a side 
view. If the motion of the top of the canopy is visible from the side, then 
it may also be possible to estimate wind at the upper interface of the 
canopy and the wind. In that case, one can anticipate a vertical gradient 
with wind speeds increasing from the ground to the top of the canopy.

Ultimately, 3D canopy tracking, via light detection and rang-
ing, for example, could obviate the need for these considerations, 
as 3D reconstruction of the canopy motion would eliminate the 
aforementioned projection errors.

Data-driven methods
The constants of proportionality needed to complete the physical 
relationships expressed in equations (7), (13) and (14) depend on factors 
specific to the objects being visually observed, such as their inertia, 
stiffness and damping. Non-intrusive measurement of these properties 
at the scale of individual environmental structures is challenging, if not 
impossible, particularly when those objects comprise a heterogeneous 
composite of multiple materials. A potential way forward is to use the 
fact that the trillions of environmental objects of interest globally can 
be classified into a set of material categories that is several orders of 
magnitude smaller in number. For example, building codes limit the set 
of allowable compositions of artificial structures to a relatively small 
number of engineered materials71,72. These materials could therefore be 
deduced in many cases from the external appearance of the structures. 
As another example, high-voltage power lines are typically composed 
of an aluminium core and polyethylene insulation, both of standard 
physical dimensions73–76. Hence, the material properties of such an 
environmental structure can be deduced as soon as it is categorized.
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Naturally occurring structures such as vegetation present a greater 
challenge, given both the diversity of their physical makeup and the 
fact that structure inertia, stiffness and damping depend non-trivially 
on factors such as age, health, moisture content and the presence or 
absence of leaves, seeds and symbiotic organisms. Notwithstanding 
these myriad challenges, initial efforts towards data-driven visual 
anemometry have produced encouraging results77–79. For example, 
a combined convolutional neural network and long short-term memory 
network has been trained on the basis of field observations of a magno
lia tree and a cloth flag exposed to naturally occurring wind condi-
tions over several weeks77. It was postulated that the convolutional 
neural network learns to recognize key features of the objects exposed 
to the wind, such as tree branches and leaves, or geometric patterns on 
the flag. Concurrently, the long short-term memory was hypothesized 
to learn key temporal features of the object motion, such as recurring 
waving or flapping motions of the geometric patterns.

The trained neural network was subsequently tested on video clips 
of the same tree and flag that were not included in the training data set. 
This purely data-driven visual anemometry achieved measurements 
of the mean wind speed with errors comparable with the background 
turbulence fluctuations at the field site of approximately 1–2 m s–1 (Fig. 2).

Because this purely data-driven, machine learning approach has lim-
ited capacity for extrapolation beyond the training data distribution77, 
it was unable to perform similarly accurate predictions using videos of 
tree specimens or flag types different from those in the training data. 
Hence, a generalizable version of visual anemometry in this case, that 
is, a method that can make accurate measurements for a diversity of 
vegetation and engineered structures, would likely require training on a 
far more comprehensive set of videos and companion anemometer data. 
Brute-force efforts of this type have proven successful in the past, such 
as in the image classification projects ImageNet80 and COCO81. However, 
developing the equivalent data set for visual anemometry would likely 

require a combination of existing open-source data and new, dedicated 
measurement campaigns. We revisit this possibility below.

Theoretical constraints on visual anemometry
Generalized visual anemometry — a technique that does not require 
calibration measurements or a priori collection of training data — will 
depend on the discovery of new physical principles that manifest 
in predictable ways across a diversity of environmental structures 
exposed to wind. In pursuit of fundamental concepts of this type, we 
have recently conducted an extensive campaign of concurrent wind 
and visual measurements in a large-scale wind tunnel82. This facility 
enables controlled studies of selected vegetation with a diversity of 
morphologies, ranging from grasses to trees (Fig. 3).

The incident wind speed can be described by a two-parameter 
Weibull probability density function83,84:
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in which C1 is a positive-valued, dimensional scale factor that increases 
for distributions p U( ) with higher variance. The dimensionless shape 
factor C2 typically takes values between 1 and 3 for wind distributions, 
with values closer to 1 indicating right skewness of the distribution83. 
Moments of the Weibull distribution can be expressed in terms of  
C1 and C2; for example, the mean wind speed is given by
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in which Γ is the gamma function.
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Fig. 2 | Data-driven implementation of visual anemometry based on 
measurements collected at a research field site and in a laboratory wind 
tunnel. a, A combined convolutional neural network and long short-term 
memory network successfully predicted the wind speed corresponding to 

new videos of the same structures included in the training data set. b, Significantly 
lower sensitivity to wind speed was observed for videos of structures not 
included in the training data set. Figure adapted with permission from ref. 77, 
Curran Associates, Inc.
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The motion of the vegetation can be similarly quantified using the 
Weibull distribution. Cross-correlation of successive images of 
the moving canopy creates a displacement vector map85 represent-
ing the spatial distribution of motion induced by the incident wind 
(vector map above tree in Fig. 3). A quantile–quantile84 analysis con-
firmed that the time series of the spatially averaged canopy motion 
can be reasonably approximated by a Weibull distribution with its own 
scale and shape factors, C1

canopy and C2
canopy, respectively.

The dependence of the canopy scale and shape factor on the cor-
responding wind factors may provide a framework to achieve generaliz-
able visual anemometry. For example, Fig. 4 shows that the various 
vegetations studied to date all exhibit a similar, sigmoidal dependence 
of the canopy scale factor, C1

canopy∼ , on the wind scale factor, C1
∼ , in which 

the tilde denotes a vegetation-specific normalization based on the 
width, height and centre of each sigmoid curve82.

The physical interpretation of this apparently ‘universal’ curve 
shape can be understood by recalling the scale factor as a surrogate 
for the mean speed of the wind and canopy. At relatively low wind 
speeds, the dynamic pressure exerted by the wind on the canopy ele-
ments may be insufficient to overcome the inertia and elastic restoring 
force of the structures exposed to wind. In this regime, the slope of the 
curve in Fig. 4 is expected to be nearly zero. At sufficiently high-wind 
speeds, the resistance of the canopy to motion is overcome, and further 
increases in wind speed correspond to a proportional increase in can-
opy motion (that is, the region of linear slope in Fig. 4). At high-wind 
speeds, further deflection of the canopy structures is limited by the 
fixed position of the vegetation roots in the substrate below. This con-
straint is reflected in the plateau of C1

canopy∼  at large values of normalized 
wind scale factor ∼C1 in Fig. 4.

A key implication of the sigmoidal response curve is that its slope — 
a measure of the sensitivity of canopy motion to changes in the incident 
wind speed — has regimes at both low and high winds wherein visual 
anemometry may be fundamentally challenged by the lack of a distinct 
structural response to wind dynamics. Where the response curve has 
zero slope, it is not possible to accomplish visual anemometry on the 
basis of the curve of canopy scale versus wind scale.

The location and width of each of these regions as a function of 
the dimensional wind speed (in m s–1, for example) are a characteristic 
of each vegetation type. Placement of a given vegetation type onto the 
universal curve in Fig. 4 requires a priori knowledge of the incident 
wind corresponding to each canopy measurement. Generalized visual 
anemometry would therefore require a means to predict the placement 
of a given structure onto the universal curve. Additional information 
based on the shape factor of the motion distribution ∼

C( )2
canopy

, the visual 
appearance of the structure, comparison with nearby, similar struc-
tures in a canopy (as discussed in the section on Energy-based meth-
ods), fine-scale changes such as leaf reconfiguration (as discussed in 
the section on flexibility and reconfiguration) or other statistical priors 
could be useful for achieving this goal. Two physically motivated 
priors related to the wind itself include the expected wind speed 
distribution as a Weibull probability distribution function, and diurnal 
and seasonal variations in wind that can be known a priori for a given 
geographic location. Deep learning models that incorporate such 
physics-based constraints have been widely used in other areas of 
physics in recent years86.

In the regime of high winds, previous work has also observed that 
canopy motions can be limited by reaching the maximum physical dis-
placement of the structure47. Importantly, the absolute turbulence level 
(in terms of dimensional wind speed fluctuations) is also the highest 
in the high-wind regime. Hence, measurements of the time-averaged 
canopy motion (Fig. 4) could be complemented by consideration of the 
temporal fluctuations in canopy motion to disambiguate the kinetic 
energy trends in high-wind-speed conditions.

The spatial scale of measurements in a wind tunnel campaign 
is limited by the size of the individual trees that could be tested in 
that facility. A wider range of spatiotemporal scales present in the 
flow through larger canopies can facilitate the incorporation of addi-
tional dynamics, such as the ‘honami’ discussed in the section on 
Energy-based methods, to further constrain estimates of the wind 
incident on a canopy.

Outlook
We conclude with a prospective discussion of three research avenues 
that could accomplish the necessary model closure for generalized 
visual anemometry.

New data sources
A data-driven approach to generalized visual anemometry could use the 
discovered universal curve as a statistical prior in a physics-informed 
machine learning framework. This approach anticipates that meas-
urements collected without ground-truth wind speed measurements 
should exhibit a scale factor relationship between the wind and canopy 
distributions that is sigmoidal (Fig. 4). The relationships between the 
wind and canopy shape factors may provide additional physical con-
straints to enable a data-driven model that can extrapolate beyond 
its training data set.

To be sure, this approach does not obviate the need for com-
prehensive data collection to train the neural networks or other 

Fig. 3 | Large-scale wind tunnel measurements of vegetation under controlled 
wind conditions. A 3-m × 3-m array of 1,296 individually addressable fans (right) 
generates wind conditions with user-defined spatiotemporal profiles and mean 
speeds up to 20 m s–1. Vegetation exposed to the wind is recorded from above 
using a high-speed camera. Spatial cross-correlation of successive images reveals 
the local, instantaneous displacement of the vegetation, illustrated in the planar 
vector field above the vegetation. Next to the vegetation, a sonic anemometer 
(white) measures the local wind speed for comparison to visual anemometry.
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machine-learning representations of the underlying physics. How-
ever, there exists a growing set of data sources that could be leveraged 
for this purpose. These include open-source, near-ground imagery87, 
coming from sources such as long-term ecological measurement 
campaigns88–93, hazard monitoring systems such as those deployed 
for wildfire detection94–102 and, in the built environment, traffic and 
security cameras103,104. A large number of existing meteorological 
measurement campaigns could also be augmented with concurrent 
video collection to provide large volumes of new labelled data to train 
machine learning models105–115.

Emerging commercial satellite data feeds can provide a potentially 
transformative data source if extended to time-resolved imagery, as the 
wide area coverage and frequent revisits of remote locations provide 
data that are inaccessible by other means99,116. Although the distant 
vantage of satellite data can limit the spatial and temporal resolution 
of near-ground canopy measurements, recent advances in artificial 
intelligence-based image upscaling could enable features of the canopy 
essential for visual anemometry to be recovered from low-resolution 
data following initial training from benchmark data sets117.

New computational tools
The two primary approaches towards visual anemometry that have been 
explored in this Perspective article — first-principles physical modelling 
and data-driven machine learning — have both been considered thus far 
from a point of view that depends on empirical measurements of the 
relevant flow–structure interactions. Advances in high-performance 
computing now make it feasible to achieve physically realistic compu-
tational simulations of wind interactions with geometrically complex 
structures such as vegetation118–121. Hence, another promising route to 
generalized visual anemometry could use simulations to complement 
the aforementioned field measurement campaigns.

Numerical simulations provide the added benefit of enabling 
complex details of environmental structures, such as the branches 
of a tree, to be tracked with high spatiotemporal fidelity. Because 
imagery from cameras provides only a 2D projection of the 3D struc-
ture kinematics, the set of parameters used to describe the canopy is  
limited to quantities derived from that projection. The canopy 
motion determined from image cross-correlation is one example 
(Fig. 3). By contrast, numerical simulations could provide 3D kin-
ematic data, from which a richer set of physical descriptors could 
be derived to quantify the canopy response to incident wind. That 
higher-dimensional description can better delineate different modes 
of structural response and could also be used for the task of iden-
tifying and classifying structures of interest in a machine learning 
context. Accurate simulations of wind response can also be used in 
virtual reality and gaming contexts, which can potentially engage a 
broader audience in efforts to crowdsource measurements for visual 
anemometry training data120.

New physics
The ultimate solution to the challenge of generalized visual anemome-
try may lie in a combined strategy that leverages knowledge of canonical 
flow–structure interactions, such as those introduced in this Perspec-
tive article, along with libraries of representative wind interactions from 
empirical observations and from analogous computational models. 
However, the most exciting role for the physics community may lie in 
a third approach: the discovery and development of new physics con-
cepts that augment existing knowledge of the nature of flow–structure 
interactions as well as remote-sensing capabilities.

Although the flow–structure interactions to be exploited by visual 
anemometry are a manifestation of classical mechanics — a subfield 
of physics that is ostensibly mature in comparison to, say, quantum 
science — knowledge of those physics is still limited to a relatively small 
set of simplified geometries. The appeal in this Perspective article to 
objects with circular cross-sections, slender or planar geometries and 
moderate elasticity was by necessity, as established models for the 
physics of flow–structure interactions have not evolved beyond those 
relatively simple configurations despite intensive study for more than 
a century122–131. A historical limitation on the study of flow-induced 
motion of more complex structures was the inability to visualize the 
associated fluid–solid interactions with high spatiotemporal resolu-
tion. However, the advent of high-speed laser velocimetry132,133, 3D flow 
tomography128,134 and algorithms to compute the pressure field corre-
sponding to flow velocity measurements135,136 now makes it possible for 
experimental physicists to revisit the classical mechanics in geometric 
configurations, approaching the complexity of structures relevant for 
visual anemometry. Indeed, important new results have emerged in 
recent years, from plant-scale to canopy-scale, which have improved 
our understanding of flow–structure interactions and which bring the 
present goal of generalized visual anemometry closer to realization70,137.

Modern model reduction techniques from dynamical systems 
theory138–140 have the potential to distill high-dimensional data sets such 
as those derived from new experimental measurements. Physicists 
familiar with the challenge of dimensionality reduction in other areas 
of nonlinear dynamics could apply many of the same tools here. Sim-
plified kinematic motifs of the observed structure motion, extracted 
using model reduction, may prove to be robust correlates of the inci-
dent wind speed and direction. Those motifs could also provide a target 
for unsupervised machine learning approaches that aim to classify or 
even deduce material properties of objects in the wind based solely on 
their observed motion.
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Although the concept of visual anemometry took initial inspira-
tion from our human powers of visual observation, the spectrum of 
visible light represents a relatively small band of the electromagnetic 
radiation that is absorbed, reflected and emitted by both natural and 
engineered objects that could be used for visual anemometry. The 
range of applications of the concepts introduced here could be further 
expanded by physicists interested in exploring the broader spectrum 
of electromagnetic radiation associated with objects covering the 
surface of the Earth that are subjected to local winds. An immediate 
example is infrared radiation, which could enable visual anemom-
etry measurements at night. Imaging at longer wavelengths, such as 
millimetre-wave imaging141–143, could also potentially be used to circum-
vent optical interference such as cloud cover, provided that the spatial 
resolution of those measurements still enables structural motions 
to be resolved. Additional optical properties, such as the polariza-
tion of reflected light, could be used to infer not only translational 
motion of objects but also changes in object orientation associated 
with flow-induced bending and torsion of reflective surfaces144 such as 
leaves and blades of grass. These signatures could provide additional 
means to discriminate between regimes of flow speed and direction 
incident on the objects.

Finally, it is important to recall that 70% of the surface of the Earth 
is covered by water. Inference of wind fields near the ocean surface is 
confounded by the more complex deformations associated with the 
air–water interface144–147. This complexity presents not only challenges 
but also opportunities. For example, the high-wind plateau in structural 
response observed for ground-mounted structures (Fig. 4) need not 
limit correlations between ocean surface deformation and wind speed 
in similarly high-wind regimes. Hence, a larger range of wind speeds 
may be accessible to visual anemometry over the ocean when compared 
with the method applied on land. In addition, ocean measurements can 
potentially use not only the kinematics of the air–water interface but 
also the wind-induced motion of ocean spray above the surface148 and 
the water-induced motion of submerged vegetation126,127,149.

This list is merely illustrative of avenues for new contributions 
from the physics community. Our goal is that our discussion of the 
opportunities and challenges associated with visual anemometry 
will encourage the reader to pursue one or more of these research 
directions. Visual anemometry provides a unique opportunity for the 
physics community to contribute to various important and far-reaching 
topics in global sustainability.
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