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Abstract
The study of naturally occurring turbulent flows requires the ability to collect empirical data down to the fine scales. While 
hotwire anemometry offers such ability, the open field studies are uncommon due to the cumbersome calibration procedure 
and operational requirements of hotwire anemometry, e.g., constant ambient properties and steady flow conditions. The 
combo probe—the combined sonic-hotfilm anemometer—developed and tested over the last decade has demonstrated its 
ability to overcome this hurdle. The older generation had a limited wind alignment range of 120° and the in situ calibra-
tion procedure was human decision based. This study presents the next generation of the combo probe design, and the new 
fully automated in situ calibration procedure implementing deep learning. The new design now enables measurements of 
the incoming wind flow in a 360° range. The improved calibration procedure is shown to have the robustness necessary for 
operation in everchanging open field flow and environmental conditions. This is especially useful with diurnally changing 
environments and possibly non-stationary measuring stations, i.e., probes placed on moving platforms like boats, drones, and 
weather balloons. Together, the updated design and the new calibration procedure, allow for continuous field measurements 
with minimal to no human interaction, enabling near real-time monitoring of fine-scale turbulent fluctuations. Integration 
of these probes will contribute toward generation of a large pool of field data to be collected to unravel the intricacies of all 
scales of turbulent flows occurring in natural setups.
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1 Introduction

An ability to obtain empirical field records of large to fine 
scale velocity field fluctuations is crucial for improving the 
physical understanding of the intricacies of turbulent flows. 
However, fine scale field measurements of turbulent fluctua-
tions are less common due to low spatiotemporal resolution 
of widely used anemometers, such as ultrasonic anemom-
eters (sonics) and LiDARs. The use of hotwire (or hotfilms) 
anemometry in the field is limited mainly due to the wind 
direction and temperature variations, forcing frequent and 
complex re-calibration (Skelly et al. 2002; Nelson et al. 
2011). The collocated sonic-hotfilm anemometer, dubbed 
the combo probe, was designed to overcome this hurdle, 
as shown in Fig. 1. Developed and implemented in several 
field setups during the last decade (Kit et al. 2010, 2017; Kit 
and Grits 2011; Vitkin et al. 2014; Kit and Liberzon 2016; 
Goldshmid and Liberzon 2018), the combo probe is capable 
of continuously sensing the fine-scales of turbulent fluctua-
tions in the field, without the need for human interaction for 
frequent cumbersome re-calibrations. Consisting of a collo-
cated sonic and two x-shaped double sensor hotfilm probes, 

the combo simultaneously samples the hotfilms and sonic 
at a high sampling frequency of several kilohertz. Machine 
Learning is used post-measurements to produce accurate cal-
ibration for the hotfilm voltages by implementing artificial 
Neural Networks (NN): the voltages are calibrated against 
low-resolution sonic anemometer data. More specifically, 
the combo successfully overcomes two major aspects that 
pose a challenge when using hotfilms in the field, but still 
had several limitations that we tackle here.

The first aspect of hotwire anemometry that posed a chal-
lenge in field measurements is the need for a repetitive cum-
bersome calibration. The calibration of the wires typically 
involves a low turbulence flow (e.g., a controlled jet or a 
wind tunnel) and preferably a pitch/yaw manipulator to cali-
brate for a wide range of angles of attack. Once completed, 
it is only valid for a narrow range of varying environmental 
conditions of temperature and humidity. When a significant 
enough change occurs, a recalibration is required. Since the 
change of environmental conditions in the field is inevi-
table, the combo probe tackles this limitation utilizing an 
alternative approach to the traditional hotwire anemometry 
calibration procedure. It uses the pre-calibrated sonic data 
to train a NN as the in situ calibration function. This in situ 
calibration procedure was developed by Kit et. al. (2010) 
and tested in several studies (Fernando et al. 2015; Kit 
et al. 2017; Goldshmid and Liberzon 2018, 2020) proving 
its robustness for use in various environmental conditions. 
Usually divided into hourly sets of close-to-steady condi-
tions, it involves a careful human-decision-based selection 
of five representative minutes from each hour of continuous 
measurements to form the training set (TS) that would be 
valid for all data collected within that hour. The selected 
minutes are to represent the entire range of mean velocity 
variations of that hour and have high quadratic mean (rms) 
values to also represent the instantaneous velocity fluctua-
tions as best as possible. Two separate NN are trained for 
every hour, one for each x-shaped hotfilm sensor, which are 
used as the voltage to velocity transfer functions. After the 
TS minutes are selected, the corresponding sonic velocity 
and hotfilm voltage data undergo low pass filtering down to 
the trusted frequency of the sonic. The filtered velocity data 
from the sonic are used as targets while the filtered voltage 
data from the hotfilms are used as inputs. Finally, the origi-
nal high frequency hotfilm voltages are fed into the trained 
NN, producing records of 3D velocity fluctuation field at 
high spatiotemporal resolution. Automation of this proce-
dure, specifically omitting the need for manual selection of 
the TS minutes, would allow the combo to operate remotely, 
and this study proposes an approach to achieve this.

The second aspect of hotwire anemometry that poses a 
challenge for field measurements is the requirement that the 
probe remains aligned with the mean flow direction, as the 
accuracy of the hotwire anemometry is proportional to the 

Fig. 1  Previous configuration (Kit et  al. 2010) of the combo probe. 
This image is taken during the field experiment in Nofit, Israel (Gold-
shmid and Liberzon 2018). The main components of the combo 
probe are 1: ultrasonic anemometer. 2–3: sonic support struts limiting 
the hotfilm sensors orientation within 120° range. 4: hotfilm sensors. 
5: absolute encoder. 6: rotating arm to align the sensors. 7: center of 
rotation of the arm. 8: motor and gearhead
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probe alignment with the mean flow (Bruun 1995). Unlike 
in a controlled laboratory setup, the wind direction in the 
field is everchanging, requiring frequent realignment of the 
sensors to maintain the mean flow angle of attack within pre-
defined tight boundaries. The combo tackles this limitation 
by mounting the hotfilm sensors on a rotating arm and using 
a software routine for periodic realignment of the probe 
with the mean flow direction. The sonic provided velocity 
field at the end of every measurement (usually minute long) 
interval determines the new desired probe direction, while 
a motor and encoder are used to rotate the arm. In the post-
processing, outlier minutes with a significantly varying flow 
direction or angles of attack larger than ±10◦ , are omitted. 
The combo is limited to measuring range of 120◦ due to 
the sonic support strut obstacles and the new combo design 
tackles this limitation.

This paper presents the two advancements made to the 
combo anemometer: a new mechanical design and an auto-
mated calibration procedure. It is organized as follows: the 
new mechanical design is described in Sect. 2.1. It includes a 
more compact design of the holding and rotating mechanism 
to allow accurate constant realignment of the hotfilm probe 
with the mean flow. The new rotating mechanism can com-
plete 360◦ turns, while assuring the hotfilm probe is always 
positioned at the rotation center collocated with the sonic 
control volume. The testing of the new combo design was 
conducted in both a controllable and noncontrollable envi-
ronment, detailed in Sects. 2.2 and 2.3, respectively. More 
specifically, Sect. 2.2 describes the laboratory experimen-
tal setup—a large environmental wind tunnel in which a 
turbulent boundary layer (BL) is created. While Sect. 2.3 
describes the field experimental setup—wind measure-
ments in marine atmospheric boundary layer (MABL) at 
the Gulf of Aqaba (Red Sea). Section 2.4 details the changes 
proposed to the NN-based calibration procedure, aimed to 
achieve a complete automation of the calibration. The auto-
mated procedure enables (almost) real-time data processing, 
which would allow the use of combo probes in meteorologi-
cal stations with the ability to monitor real-time fine scale 
turbulence statistics and input them into prediction models. 
Finally, Sect. 3 presents the results obtained in the wind 
tunnel using the automated in situ calibration method and 
the new calibration methodology testing on field data; it also 
presents an in-depth discussion of the findings. Altogether, 
the new mechanical design and new automated calibra-
tion procedure ensure persistent accuracy in the absence of 
human decision factor, ensure robust operation over pro-
longed periods, enable close-to-real time data processing 
making it suitable for meteorological stations and possibly 
non-stationary platforms such as moving terrain or marine 
vehicle, planes, and UAVs where it mainly allows tackling 
the problem of rapidly changing mean wind direction and 
magnitude. Studies interested in implementing the new 

combo design on moving platforms will still need to dif-
ferentiate between the platform vibrations and those of the 
turbulent flow itself. While previous works demonstrated 
the combo ability to provide accurate measurements of the 
fine turbulent flow scales in both stable and unstable BL 
flows (Fernando et al. 2015; Kit et al. 2017; Goldshmid and 
Liberzon 2018, 2020), this paper provides a brief preview of 
evidence that the new combo design can even be deployed 
in the open field/sea and measure the wind coming from all 
directions in unsteady environments.

2  Methods

2.1  New mechanical design

Building on the previous configuration of the combo ane-
mometer, demonstrated in Fig. 1, this section details the 
most recent mechanical design advancements accomplished 
for improving the combo usability in field measurements. 
The previous design of the combo had two mechanical con-
straints. The first is that the hotfilm probe orientation range 
was restricted by the sonic support struts, labels 2 and 3 from 
Fig. 1, limiting the realignment of the probe within a 120◦ 
range. The second is the location of the axis of rotation of 
the hotfilm probe (the two x-shaped sensors). The position-
ing of the motor and the gearhead is several centimeters 
from the center of the sonic control volume, causing the 
hotfilm probe to be at different distances from the center of 
the sonic measurement volume at each yaw angle. While the 
latter limitation was shown not to cause a major reduction in 
accuracy, the former limitation did pose a significant con-
straint on the ability to monitor and record wind flow during 
diurnal and weekly changes in mean wind direction. Both 
limitations are fully addressed in the presented new design.

The previous combo configuration had the sonic fixed in 
place facing north (as per the convention) and the hotfilm 
probe rotating in the sonic control volume to face the mean 
direction of the flow. When the data was collected, it was all 
converted to correspond with the coordinate system of the 
hotfilm probe. The newly proposed configuration suggests 
rigidly mounting the hotfilm probe to the sonic and rotat-
ing them together according to the direction of the flow. 
The mean wind direction is determined by the sonic pro-
vided velocity field components, and the motor realigns the 
combo. Keeping track of the sonic and probe orientation 
relative to north is achievable using an absolute encoder.

Unlike the older design of the combo, the new one ena-
bles coverage of the complete 360° range of wind. The 
entire combo is rotated on a Schneider Electric Motor with 
a built-in absolute encoder, model LMDAE853. A more 
detailed image of the mechanics is presented in Fig. 2. It 
details the more rigid, and eventually simpler construction 
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and operational combo design. Eliminating the need of coor-
dinate systems translation, the new design also simplifies the 
control software routine, therefore minimizing the chance of 
error or damage to the hotfilms.

The combo senses the fine scales using the 2 x-shaped 
hotfilm sensors fabricated by TSI model 1241-20W (label 
2 in Fig. 2). Each sensor has two orthogonal hotfilms each 
with a diameter 50.8 μm , a length of 1.02 mm , and a separa-
tion distance of 1.65mm . As each x-shaped pair is sufficient 
to resolve two orthogonal flow velocity components, the two 
x-shaped sensors were placed adjacently and were oriented 
90◦ from each other in the roll axis to capture the 3-com-
ponent velocity field, with a redundancy of the streamwise 
component. The total separation distance between the two 
x-shaped sensors is 1.8mm , effectively defining the spatial 
resolution of the probe. Reasoning behind using a pair of 
x-shaped probes as opposed to a single 3-wire probe was 
economical and elaborated in Kit and Liberzon (2016). 
Where a less expensive pair was shown to produce veloc-
ity field predictions on-par with the more expensive 3-wire 
sensor. One probe provides the u, v and the other provides 
the u,w components. The transfer function can either be 
computed for each x-probe separately while averaging the 
redundant u component or to be constructed using 4 volt-
age inputs with 3 velocity outputs. Kit and Liberzon (2016) 
already demonstrated that neither is superior to the other 
and we confirm this result here. The hotfilm probes are con-
trolled by four miniCTA channels, model 54T42, fabricated 
by Dantec Dynamics. The ultrasonic anemometer installed 
on the combo is fabricated by RM Young, model 81000. 

It has an acoustic fly path of 15 cm. For data acquisition 
simplicity, the sonic is oversampled at several kilohertz, cor-
responding to the sampling frequency of the hotfilms. This 
new combo was tested in both field and laboratory environ-
ments as detailed in the next two sections.

2.2  Wind tunnel experimental setup

The laboratory experimental setup took place in the Environ-
mental Wind Tunnel at the Civil and Environmental Engi-
neering Faculty of the Technion-Israel Institute of Technol-
ogy. This wind tunnel (Fig. 3) has a 12m long test section 
that operates using a powerful blower in an open-circuit 
flow-suction mode that can produce mean wind velocities 
of up to 14m/s . The cross section is a square of 2.0 m on 
each side and the roof is adjustable to enable control of pres-
sure gradients in the streamwise direction. The wind tunnel 
inlet is equipped with a flow straightening honeycomb that 
is 15 cm long and consists of cylinders with a 5 cm diameter.

The wind tunnel currently hosts a physical scaled model 
of a corn field used for a project that examines wind inter-
actions with vegetation canopy. We used the existing setup 
to compare the hotfilm calibration procedures by deploying 
the combo in the wind tunnel BL; the hotfilm position was 
55 cm from the wind tunnel floor (see Fig. 3c) and their 
position along the wind tunnel main axis is depicted by the 
red circled x in Fig. 3b. The corn field model and the airflow 
BL generation elements were constructed based on literature 
reviews (Ross 1993; Finnigan 2000; Asner et al. 2003; Poggi 
et al. 2004) and some trial and error. The design we used 
included a grid with various densities to generate shear flow 
and artificially increase the BL height—it is most dense at 
the bottom and least dense at the top. The grid is positioned 
between the vortex generating spires and the model canopy, 
while gravel is spread in the entire area leading to the model 
canopy to provide surface roughness.

Prior to actual measurements the mean velocity profiles 
at the combo location for different flow rates provided by 
the blower were measured using pitot tubes, providing BL 
thickness and to confirm correct placement of the hotfilm 
inside the BL. The profiles for high and low flow rates, 6m/s 
and 2 m/s mean velocity at the elevation of the hotfilms cor-
respondingly, of all examined experimental setups are pre-
sented in Fig. 4. The velocity profiles make it evident that the 
hotfilm probe was indeed inside the BL for all experimental 
regimes. The BL height is about 70 cm . The ratio of the 
sonic length to the height of the BL is not negligible in this 
case, but this is not the case in the field. This is important 
because the sonic averages velocities over different regions 
in this BL inherently introducing errors in the sonic read-
ings. The three types of experimental setups are considered: 
(1) the complete setup described in Fig. 3b and referred to as 
YGYC, which stands for yes-grid-yes-canopy; (2) the same 

Fig. 2  The new mechanical design of the combo anemometer. The 
combo, sonic and hotfilm probes, rotates as a single unit according to 
the mean direction of the flow determined by the sonic. This newest 
version of the combo is composed of the following 1: sonic. 2: two 
x-shaped hotfilm sensors (hotfilm probe). 3: aluminum profile probe 
holder (arm). 4: bottom mounting plate to supporting the sonic and 
the hotfilm holder/arm. 5: motor with an absolute encoder
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setup as before but without the canopy model and referred 
to as YGNC, which stands for yes-grid-no-canopy; finally, 
(3) the same as before but excluding the grid, i.e., only the 
gravel, spires, and honeycomb and referred to as NGNC, 
which stands for no-grid-no-canopy. The three setups result 
in different shapes of the BL with various levels of turbu-
lence intensity at the location of the measurement. Table 1 
summarizes the three configurations examined.

After examining the mean properties of the experimen-
tal configurations, the fine scale turbulent properties are 
considered. It is common practice for controlled laboratory 

experiments with hotfilms to calibrate the hotfilms using 
a low turbulence jet and a mechanical manipulator. The 
hotfilm calibration was performed using an automated 
manipulator fabricated by Dantec Dynamics and consisted 
of a controlled jet with a motorized pitch and yaw manipu-
lator. The data collection and processing were performed 
using a specially written MATLAB routine to achieve a 
wider range of angles of attack and velocities for the four 
wires simultaneously. Expecting high instantaneous attack 
angles due to high turbulence intensity in the BL, the cali-
bration was in the shape of a wide cone covering changes 
in azimuth and elevation in the range of −45◦to + 45◦ with 
increments of 7.5◦ on each rotation axis. Covered range of 
mean velocities was 0–15 m/s, each point was sampled at 
6000 Hz and averaged over 5 s. This jet-based calibration 
was performed twice, before and after the measurements 
in the wind tunnel, to correct for possible drift errors. The 
transfer function estimates were obtained using the lookup 

Fig. 3  a A sketch of the Environmental Wind Tunnel at the Civil and 
Environmental Engineering Faculty of the Technion-Israel Institute 
of Technology. A suction type wind tunnel capable of up to 14 m/s 
mean velocity. b The experimental setup of the artificially designed 
BL in the wind tunnel includes the honeycomb at the inlet on the left. 

Gravel covers the tunnel floor between the honeycomb and the model 
canopy. On the gravel are the vortex generating spires and the shear 
generating grid. c Combo in the wind tunnel is installed downstream 
from the model canopy

Fig. 4  Profiles of the mean velocity at high and low flowrates for all 
three configurations examined using the combo

Table 1  Experimental configurations and naming of wind tunnel tests

Experiment name Grid installed Canopy Honeycomb, 
spires, and 
gravel

NGNC No No Yes
YGNC Yes No Yes
YGYC Yes Yes Yes
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table method, as it was suggested to be the most accurate 
up-to-date (Van Dijk and Nieuwstadt 2004).

In the wind tunnel, the combo obtained data was saved in 
chunks of 52 s, like it would be done in the field operation 
to allow 8 s for realignment of the probe. The background 
temperature range of the calibration and flow was between 
20 and 26 ◦C . The overheat ratio used here was 1.7 and the 
combo was sampled at 6000 Hz to capture the fine scales of 
the flow.

The spectral shapes, turbulence intensities, and various 
length scales of the measured turbulent BL flow are presented 
in Table 2. The turbulence intensity is defined as,

where U is the mean streamwise velocity field component, 
and the turbulent kinetic energy is defined as,

where the u, v,w represent the instantaneous fluctuations 
of the 3D velocity field components. The horizontal length 
scale is defined as,

here � is the TKE dissipation rate,
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and � is the kinematic viscosity. The Taylor length scale is 
defined as,

and finally, the Kolmogorov length scale is,

The spectral shapes of the velocity field component fluc-
tuations and length scales presented in Fig. 5 assure that 
the BL behavior was well captured, the probe size selection 
was sufficient, and that the measurements were conducted 
properly. The spectra clearly show the three expected energy 
cascade ranges: the energy containing range, the inertial sub-
range (with close to −5∕3 slope), and the dissipation range. 
Flattening out of the spectral shapes at the highest frequen-
cies indicated that the signal to noise is too low above a 
specific frequency. The flattening is observed at different 
frequencies, ranging from 500 to 3000 Hz, depending on the 
flow regime and mean velocity. The conversion of the length 
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Table 2  Turbulence statistics of the examined flow in the wind tunnel

Flow rate Experimen-
tal configu-
ration

TI , % L
H
,×10−1 m� × 10−3 m � × 10−4 m

Low NGNC 6.0 0.2 5.59 3.4

YGNC 13 1.7 10.7 3.4

YGYC 31 0.5 4.38 1.9

High NGNC 6.0 4.7 13.4 3.7

YGNC 10 5.0 13.5 2.9

YGYC 22 0.9 7.40 1.4

Fig. 5  Power density spectra of velocity components fluctuations, 
with the low and high flow rates examined. The results presented here 
provide the three experimental setups of YGYC, YGNC, and NGNC. 
The horizontal length scale, Taylor length scale, and Kolmogorov 
length scale for each of the experimental configuration are presented 
as well
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scales to frequencies was computed using f = U∕L , where 
L is the length scale of interest.

The overheat ratio of 1.7 was sufficient but could be 
increased depending on the flow regime. These results fur-
ther emphasize that the compensation of the spatial resolu-
tion due to the use of two independent x-probes together 
did not affect the measurements. As the flow becomes more 
turbulent the dissipation range extends to higher frequencies, 
manifesting the existence of smaller scales in the flow not 
dissipated by viscosity. The black −5∕3 line is drawn in the 
same place in both subplots of Fig. 5, indicating the fluctua-
tions are also intensified with the increased experimental 
setup complexity.

Both flow regimes without the model canopy appear to 
be characterized by similar length scales values, and when 
the canopy is introduced the length scales appear smaller. As 
expected, the Taylor length scales appear to correspond with 
scales within the inertial subrange. The Kolmogorov length 
scales are the largest scales in which the viscous dissipa-
tion dominates the turbulent kinetic energy and converts the 
energy into heat, and their values indicate that an increase 
in the sampling frequency and overheat ratio might provide 
additional information.

2.3  Gulf of Aqaba experimental setup

The new combo was also deployed for field measurements 
with the goals of testing its durability and its capability of 
continuous operation without human intervention for days or 
weeks at a time. The testing took place in an open sea envi-
ronment at the northern tip of the Gulf of Aqaba (Red Sea) 
in May of 2019. The gulf hosts a plethora of recreational 
activities due to the presence of a coral reef. It is also a home 
of several large ports since Egypt, Israel, and Jordan share its 
shoreline. Despite a significant amount of wave activity and 
topography that generates a diurnally repetitive wind flow 
along the gulf, its wind–wave regime was never thoroughly 
investigated. The research goal of this 2019 Study was to 
understand the fine scale turbulent fluctuations in the local 
MABL. This complete 2019 Study was a more comprehen-
sive one than the previous 2017 Study (Shani-Zerbib et al. 
2019), because it included the air flow turbulence measure-
ments using the new combo on top of the experimental setup 
used also in 2017 (Shani-Zerbib and Liberzon 2018; Shani-
Zerbib et al. 2018). Only a small portion of the results of 
the 2019 Study will be presented here; it is only for the sake 
of comparison of the newly proposed automated calibra-
tion procedure with the previously used manual calibration 
procedure.

The measurements took place at a pier designed for 
marine monitoring at the Interuniversity Institute for Marine 
Sciences (IUI) in Eilat, Israel, situated in the southmost part 
of Israel. Figure 6 presents the unique topography of the gulf 

that makes it an appealing location for wind–wave interac-
tion research. It is located between relatively high mountain 
ridges that form an almost rectangular shape of 15 km width 
and is composed of relatively deep water. The rectangular 
shape of the gulf has a 6.5 km fetch of deep water up to the 
point of measurements. It also hosts a rather unique and 
steady diurnal wind pattern during daylight hours, char-
acterized as approximately 10°–20° northeastern wind of 
8–12 m/s.

Most elements of the experimental setup in the 2019 
Study are similar to those in the 2017 Study (Shani-Zerbib 
and Liberzon 2018; Shani-Zerbib et al. 2019). The addition 
to this 50-h continuous study was the redesigned combo that 
was installed 2.37 m above the mean water level. The combo 
consisted of the same sonic, hotfilm, motor, and bridges 
as the laboratory experiment. The combo was sampled at 
2000 Hz and due to the harsher environmental conditions in 
the field, the overheat ratio was set to a lower value of 1.5. 
The combo provided records of the turbulent fluctuations 
of the wind velocity field components. The experimental 
setup also included an array of five Wave Staff wave gauges 
to sense the water wave field, two additional RM Young 
81000 ultrasonic anemometers at two altitudes, 0.92 m and 
3.68 m above the mean water level, to obtain the mean wind 
speed profile, and a water pressure gauge to obtain the mean 
water level.

A brief portion of the results is presented in Fig. 7, the 
rest are under preparation for publication elsewhere. Fif-
teen percent of the turbulent flow data points were discarded 
because the average wind direction did not remain within the 
±10◦ range of the instantaneous probe orientation. The tem-
poral evolution of the four parameters presented here include 
the turbulence intensity, horizontal length scale, the mean 
wind velocity at ten meters above the mean water level, and 
the significant wave height. The TI and LH are defined in 
(1) and (3). The U10 , mean wind velocity at 10 m above 
the mean water level, was obtained by extrapolating the 

Fig. 6  Topographic layout of the northern tip of the Gulf of Aqaba. 
The location of the pier at the Interuniversity Institute for Marine Sci-
ences (IUI) and the 6.5 km fetch along the wind flow direction are 
also presented. The bathymetry of the gulf is displayed in color
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logarithmic wind speed profile derived from the two sonic 
records. The Hs is the significant wave height defined as the 
mean wave height of the top 1∕3 of the highest waves in the 
recorded ensemble. The temporal evolution of these param-
eters reveals new patterns and even raises several questions 
regarding the wind–waves interactions that would need to 
be investigated further as these are out of the scope of this 
paper. All average wind speeds recorded higher than 2 m/s 
ranged from northern winds to eastern winds in the range of 
−15◦ to 93◦ . This range is smaller than the previous design 
combo limitation of 120◦ , meaning the previous configura-
tion of the combo would have been sufficient in these con-
ditions. However, installing the combo at this site would 
require preliminary characterization of the wind regimes to 
ensure the combo senses the whole range of interest. Other 
studies that would benefit from this addition to the mean 
wind direction range include investigations of slope flows 
in mountainous or hilly terrain dominated by diurnal varia-
tions of up- and down-the slope flows, up and down valley 
flows, measurements during significant synoptic events, etc.

This experiment not only verified the durability and work-
ing capability of the new combo design, but also showed its 
capability of working continuously without human interven-
tion in changing field conditions. This high spatiotempo-
ral resolution anemometer is useful for many types of field 
studies in all types of environments, both changing and 
steady. The automated calibration approach is presented in 
the next section along with the previously used calibration 
procedures.

2.4  Different calibration approaches

This section summarizes different calibration approaches 
commonly used in the literature and proposes a procedure 
to automate the calibration by making several changes to one 
of the previously used methods. Traditionally, the calibration 

procedure includes either a low turbulence jet or a low tur-
bulence wind tunnel to calibrate hotwires/hotfilm. In the use 
of multi-wire probes, a gimbal or mechanical pitch and/or 
yaw manipulator is additionally necessary. The estimation of 
the voltage to velocity transfer function in laboratory studies 
is most commonly computed using the least-squares poly-
nomial fitting using King’s law or using the lookup table 
method (Van Dijk and Nieuwstadt 2004). However, Van 
Dijk and Nieuwstadt (2004) argued that the most trustworthy 
estimation method is the lookup table, because it does not 
oversimplify (or underfit) the transfer function. Historically, 
it was not preferred as it is computationally costly; however 
modern computational power makes this method much more 
practical to implement, i.e., using the griddedinterpolant 
MATLAB® function (Tsinober et al. 1992).

For this reason, we decided to use the lookup table as 
the ground truth (GT) reference and to compare all attained 
results to the GT to quantify the performance quality of each 
method; a summary of all methods elaborated in this section 
is listed in Table 3. The GT set of the laboratory experiments 
is also referred to as TJ3—it stands for lookup Table using 
the Jet data with an output of 3 velocity components, i.e., 
no redundant information of the streamwise component to 
be averaged. The GT used for the field experiment is elabo-
rated later in the section. The redundant information of the 
u component stems from our use of a 4-wire hotfilm probe. 
The use of two x-probes sacrifices some spatial resolution 
but has the benefit of resolving the streamwise component 
at higher signal to noise ratio. Two independent studies (Van 
Dijk and Nieuwstadt 2004; Kit and Liberzon 2016) showed 
an alternative approach of averaging two sub probes that 
were defined a bit differently, yet neither was shown to be 
superior to the other. They defined them as the two x-probes, 
uwsub1 = f

(
E1,1,E1,2

)
 and uvsub2 = f

(
E2,1,E2,2

)
 , and averag-

ing only the u component of the sub probes. In the text, 
we refer to this method as TJ2 ; it stands for lookup Table 
using the Jet data with an output of 2 velocity components 
each time, i.e., the redundant information of the streamwise 
component needs to be averaged. Since the hotfilms gradu-
ally degrade with use resulting in measurement drift, the 
traditional jet-based calibration was performed twice. Both 
the pre-measurement and post-measurement jet-based cali-
bration sets were used to construct two independent transfer 
function estimates, the outputs from these two were eventu-
ally averaged to correct for the drift error.

The other traditional method commonly used for hotwire 
calibration is the polynomial fitting using the least-squares 
method. This is based on King’s Law that relates the heat 
transfer coefficient to the fluid velocity using a polynomial 
approximation whose coefficients are obtained during the 
calibration. Van Dijk and Nieuwstadt (2004) have shown 
that this approximation oversimplifies the heat transfer 
coefficient relationship to velocity and suggested for future 

Fig. 7  Temporal evolution from May 27th, 2019 (time zone 
GMT + 3) of four important wind–wave interaction parameters; a tur-
bulence intensity; b horizontal length scale; c mean wind speed at ten 
meters above the mean water level; d significant wave height
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(and past) studies to consider only the lookup table method. 
When we attempted to examine this claim using our wide 
attacking angle calibration sets, we noticed that using 1000 
different initial guesses for the least squares fit numerical 
algorithm provided 1000 different solutions. This most 
likely means that the fit converges to a local minimum with 
each guess, which was confirmed by calculation of the self-
reconstruction errors of more than 100,000 solutions. The 
computational costs, however, are tremendously high mak-
ing it an impractical approach for high turbulence intensity 
conditions characterized by a wide range of flow attack 
angles. We refer to this method as PJ3 ; it stands for least-
squares Polynomial fitting using the Jet data with an output 
of 3 velocity components, i.e., no redundant information of 
the streamwise component to be averaged. Since the lookup 
table interpolates and averages between known values and 
does not use a single parametric curve to fit all data, we 
selected TJ3 as GT reference.

The jet-based calibration methods are impractical in the 
field due to the above-mentioned variability of environmen-
tal conditions, and the in situ calibration method was origi-
nally proposed as an alternative by Oncley et al. (1996), Pou-
los et al. (2006). In situ calibration was later implemented 
several times in the laboratory to demonstrate its capabilities 
(Kit et al. 2010; Kit and Liberzon 2016) and many times in 
the field (Kit and Grits 2011; Fernando et al. 2015; Kit and 
Liberzon 2016; Kit et al. 2017; Goldshmid and Liberzon 
2018). The studies in the laboratory presented the ability to 
use the simultaneously measured low frequency signal from 
the sonic to calibrate the high frequency signal of the hot-
film by means of least squares polynomial fitting and train-
ing artificial neural networks (NN). Similar to the principle 
of using the low turbulence jet for calibration, the transfer 

function never sees high frequency velocity fluctuation data. 
Based on the physics of heat transfer, it is assumed that the 
heat transfer rate dependency on velocity is not a func-
tion of frequency. In other words, the thermal conductivity 
and thermal capacity of the sensor are not impacted by the 
frequency of the eddy that passes by, thereby allowing to 
calibrate using the low turbulence jet where the hotfilms are 
exposed to a low turbulence intensity flow and the recorded 
voltages at each mean velocity are averaged over a few sec-
onds. Hence, training a transfer function model on low pass 
filtered data results in a model fitting to translate all frequen-
cies similarly. The low pass filtering frequency is determined 
by the empirical relationship of the upper sonic trusted fre-
quency to the mean velocity (Kaimal and Finnigan 1994),

where L is the acoustic fly-path of the ultrasonic signal 
depending on the sonic model in use, here L = 0.15m . The 
wind tunnel data collected in this study had the sonic moni-
toring the flow simultaneously therefore providing another 
calibration set inside the wind tunnel for comparison. The 
presentation of a polynomial curve fitting of the in situ 
data would have been redundant to the studies of (Kit et al. 
2010; Kit and Liberzon 2016), it would not provide any new 
insights and was therefore chosen to be omitted from this 
study. Instead, and according to the suggestion made by Van 
Dijk and Nieuwstadt (2004), the in situ calibration set was 
used for the lookup table transfer function estimates. The 
two sets are TI3 and TI2 ; these stand for lookup Table using 
the In situ data with an output of 3 or 2 velocity components, 
respectively. Here too, the redundant information of the 
streamwise component doesn’t or does need to be averaged, 

(10)f =
U

2�L
,

Table 3  Examined calibration 
methods of the 4-wire hotfilm 
probe

The underlined cells correspond with the reference signals—ground truth (GT), in the laboratory and field. 
Each method is denoted by a two lettered acronym with a numbered index; they are all listed on the right 
two columns of this table. The first letter of the acronym describes the method name, i.e., T: lookup Table, 
P: Polynomial curve fitting, S: Shallow NN, D: Deep NN. The second letter of the acronym describes the 
calibration data source, i.e., J: Jet obtained calibration data, I: In situ calibration data, H: Handpicked 
points from the in situ data, A: All points are from the in situ data. Finally, the numbered indices represent 
the number of velocity components in the calibration function output, i.e., 2 represents only two compo-
nents per computation and the requirement for averaging of the redundant component, and 3 does not pro-
duce a redundant component and therefore does not require averaging

Calibration method Inputs Outputs Jet In situ

Lookup table E1,1E1,2E2,1E2,2 u, v,w GTlab = TJ3 TI3

E1,1E1,2

E2,1E2,2

u,w

u, v

TJ2 TI2

Polynomial curve fitting E1,1E1,2E2,1E2,2 u, v,w PJ3 –
Shallow neural network
 Handpicked training set E1,1E1,2E2,1E2,2 u, v,w – GTfield = SH3

 All data for training set (automated) E1,1E1,2E2,1E2,2 u, v,w – SA3

Deep neural network
 All data for training set (automated) E1,1E1,2E2,1E2,2 u, v,w – DA3
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respectively. After discussing the two estimation approaches 
(lookup table method and the polynomial fitting) using the 
in situ calibration set, the NN approach is considered.

NN have also successfully been used for complex func-
tion approximations. Several studies have shown that regres-
sion NN are capable of capturing the velocity-voltage rela-
tionship estimates strikingly well in hotwire anemometry 
(Kit and Grits 2011; Fernando et al. 2015; Kit and Liber-
zon 2016; Kit et al. 2017; Goldshmid and Liberzon 2018). 
In these studies, the training set (TS) used for each model 
was based on delicately selected minutes that contained 
mean velocities that covered the entire range of interest 
and high rms values of velocity fluctuations. Elimination 
of such manual selection procedure will fully automate the 
in situ NN-based calibration of combo data and enable the 
fine scale measurements to be obtained in the field inde-
pendently of human decision; the automation procedure is 
discussed in more detail below. It mainly sums up to our 
suggestion of using all low pass filtered data points within 
a selected period of constant ambient properties (usually an 
hour for best comparison with the previous non-automated 
method) as the TS. As in the previous methodology for the 
in situ calibration of the combo probe, the use of multilayer 
feedforward NN is implemented using the MATLAB Deep 
Learning Toolbox.

The motivation to use deep learning stems from the fact 
that advances in machine learning research teach us that in 
order to achieve better training of NN, the TS should be 
as representative as possible to describe the whole dataset 
(Ng 2018). We, therefore, propose to use all low pass fil-
tered data of a predetermined period with constant ambient 
properties as the TS. While inclusion of all low pass filtered 
data in the TS best represents the dataset, it increases the 
TS size by at least an order of magnitude and requires an 
increase in the network size to avoid underfitting. Moreover, 
as the selection of an hour was previously chosen arbitrar-
ily because of the flows examined, the general requirement 
is for the background flow conditions to remain constant, 
i.e., temperature, pressure, and humidity. The automated 
process should include a maximum duration and a range in 
which these properties are considered sufficiently constant. 
Datapoints with a change in temperature or humidity greater 
than 10% were omitted; the selection of 10% was arbitrary 
to ensure that no outliers were present in the duration of the 
hour. Optimization of these parameters was out of the scope 
of this study but should be conducted by future studies. The 
low pass filtering frequency should be chosen independently 
for each minute based on the mean velocity of that minute 
using the empirical relationship (10). To quantify the auto-
mated procedure results (item 3 in the list below), we also 
computed the previously implemented (Kit et al. 2010, 2017; 
Kit and Grits 2011; Vitkin et al. 2014; Fernando et al. 2015; 
Kit and Liberzon 2016; Goldshmid and Liberzon 2018, 

2020) NN procedure (item 1 in the list below) and added an 
intermediate step as well (item 2 in the list below). A list of 
the NN-based methods examined includes:

1. The SH3 ; this stands for Shallow feedforward NN (2 lay-
ers) with 100 hidden neurons, a Handpicked TS, and a 
3-component output—therefore no redundant compo-
nents for averaging (this is the same for all three NN 
models). The selection of the TS was conducted sepa-
rately for each flow type, allowing a separate model to 
be trained. This is also the GT for the field experiment.

2. The second shallow NN method we examine is the SA3 ; 
this stands for a Shallow feedforward NN (2 layers) with 
100 hidden neurons, but with an automated TS using 
All data points collected with similar ambient condi-
tions. This is an extreme case because three different 
flow types attained in the laboratory (listed in Table 1) 
are examined together and calibration transfer functions 
are constructed using the same model.

3. Finally, the third NN model type we examine is DA3 ; 
this stands for Deep feedforward NN model (15 layers) 
with All low pass filtered data included. Each layer has 
100 hidden neurons, and the TS is also selected using 
all data points from all three flow types. This is also the 
suggested method for complete automation.

To eliminate avoidable errors, we trained ten separate NN 
models of identical hyperparameters and network architec-
ture of 15 layers with 100 neurons each and averaged their 
results; this is true for all NN results we discuss in this study. 
Selection of 15 layers for the deep network was dictated by 
the available PC memory limits. We randomly split the data 
each time into 95% training,4% validation, 1% test. In turn, 
each of the 10 models had a different, randomly selected, 
combination of datapoints for each of the training, valida-
tion, and test sets. To provide an order of magnitude for 
the dataset sizes, we can assume that each hour has more 
than 5000 points for training: 60 min, 52 s of data recorded 
each minute, lowest average wind speed was 2 m/s ; there-
fore the corresponding lowest trusted sonic frequency is 
2 Hz , and less than 15% of points were not in the ±10◦ of the 
probe orientation. The low range of possible datapoints for 
each hour is then ( 60 × 52 × 2 = 6240 points; 15% omitted 
5304 points; training = 5038 points; validation = 213 points; 
test = 53 points). The networks were trained on a single GPU, 
the loss function was MSE, and the training function was the 
scaled conjugate gradient.

We noticed that the large scales velocity fluctuations 
were captured somewhat differently in each of the 10 shal-
low networks; this was observed before (Kit and Liberzon 
2016), and a correction was suggested using the large scales 
from the sonic. This difference is exhibited as a constant 
shift of the power density spectrum of velocity fluctuations, 
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although the shape remained the same. It was suggested 
that the final averaged time-series should be shifted to 
correspond with the trusted large scales of the sonic. The 
inconsistency between the 10 NN outputs raised a question 
of whether such bias is avoidable. After noticing that the 
polynomial fits using various initial guesses converged to 
different solutions (probably reaching local minima), we 
suspected that the NN might be doing the same thing. An 
attempt to tackle this was made using the training of a deep 
NN. It is suggested (Kawaguchi 2016) that deep NN are 
highly unlikely to have local minima, instead saddle points 
are expected and the global minimum is more susceptible to 
be found when a solution is reached. Indeed, after training 
the deep NN the scatter in large scales results between the 
individual NN realization was avoided. This result bolsters 
the above assumption that the shallow NN was too simple to 
represent the complex voltage to velocity transfer function.

Our initial suggestion for automation of the in situ NN-
based training is in increasing the TS size by using all low 
pass filtered data. The motivation is to maximize the vari-
ability of voltage-to-velocity conversion data to train the 
network. Figure 8 shows (Ng 2018) that an increase in the 
TS size might not be sufficient to obtain the desired per-
formance and an increase in the complexity of the network 
should be considered as well. This is also known as the bias 
vs variance tradeoff in machine learning. The two most com-
mon sources of possible errors in NN training are bias and 
variance (Ng 2018). The variance (associated with overfit-
ting) of a trained NN is how much worse the model performs 
on unseen data than it did on the TS. If the variance is high, 
it is commonly helpful to increase the TS size. Bias (associ-
ated with underfitting) is the embedded error in the TS and 
is broken down to avoidable and unavoidable bias. An exam-
ple of unavoidable bias is the sonic measurement limitation, 
while an example of avoidable bias is a simplified model to 
represent a complex relationship, Kings law in our case. The 
avoidable bias can be eliminated by increasing the size of the 
model (i.e., adding more neurons and layers). Theoretically, 

when the bias is small, but the variance is large, adding more 
training data will probably help close the gap between the 
test and TS errors. Eventually we increased both the TS size 
and the model complexity, and the difference between SA3 
and DA3 will present the effects of each of the steps.

We did not perform a complete learning curve analysis on 
this set because that might not be useful to implement across 
different flows when attempting to automate the calibra-
tion procedure of the combo probe in field studies. We did, 
however, provide a sample (MSE error evolution in training 
one of the 10 models in) to the “Appendix” for reference. 
The other reason is that we do not have a real ground truth 
for the reference, using the sonic data as a target our TS 
has an embedded unavoidable error in it. The sonic sensed 
velocity field is of finite accuracy, set by the manufacturer 
calibration correcting for the presence of struts and the use 
of sophisticated electronics to resolve the acoustic signal 
Doppler effect measurements. Moreover, the sonic provides 
spatially averaged measurements, depending on their acous-
tic signal fly-path length, in the case of the used here wind 
tunnel measurements the ratio of the sonic acoustic fly path 
to the BL height is about 20% . While in the field it would be 
at least 1–2 orders of magnitude smaller and is expected to 
perform much better.

To conclude, this section discussed various calibration 
methods, some of which are commonly used, and a newly 
proposed one. The performance of these methods in terms 
of small scales, the large scales, and turbulence statistics 
comparisons will be examined in the next section.

3  Results and discussion

This section discusses the performance of the methods for 
estimating the voltage to velocity transfer function. These 
methods include both traditional approaches and the newly 
proposed automated approach. A comparison between the 
signals reconstructed using different calibration approaches 
is made. More specifically, quantification of a normalized 
errors in reconstructing both the small and large scales is 
presented along with a qualitative and quantitative compari-
son of the spectral shapes. These present the validity of using 
the automated method and its robustness and capabilities.

The qualitative comparison of the small scales is achieved 
using the average delta error. It is defined as the average over 
errors of all three velocity components,

similarly to how it was defined (Vitkin et al. 2014; Kit 
and Liberzon 2016). The delta error is defined as the nor-
malized to the rms, and is therefore a non-dimensional 

(11)� =

(
�u + �v + �w

)

3
,Fig. 8  Left: Example error diagnosis of training a NN model with 

respect to TS size (Ng 2018). An increase in the size of the TS will 
not necessarily provide the desired performance. Right: Error diagno-
sis example of bias vs variance in training a NN model. The underfit-
ting or overfitting (bias vs variance) of a model can be modified based 
on the network complexity
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error parameter (Vitkin et  al. 2014; Kit and Liberzon 
2016) that is defined for each velocity component sepa-
rately as

The u, v,w represent the fluctuations of the signal in 
the streamwise, longitudinal, and vertical components of 
velocity. The subscript GT represents the ground truth or 
reference signal, i.e., TJ3 in the laboratory and SH3 in the 
field. These � errors are presented in Fig. 9, separately for 
each flow regime and as a function of the mean velocity. 
Figure 9a–c presents the delta errors separately for each 
flow regime observed in the laboratory. The � values of the 
field measurements are presented in Fig. 9d and represent 
the comparison of the proposed automated method 

(
DA3

)
 

to the previous non-automated method; these values are 
also presented separately for each velocity component.
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The TJ2, PJ3, TI2, and TI3 are the most used traditional 
calibration methods today; the examined NN-based calibra-
tion methods show delta error values of the same order as 
the traditional methods and are even smaller in some cases. 
Most of the delta errors lie in the range of 0.2–0.8, sug-
gesting that the methods are comparable; moreover, these 
values are of the same range observed in the previous study 
(Kit and Liberzon 2016). When the sonic is used for cali-
bration, the delta errors show tendency to decrease with 
increasing mean wind speed, regardless of the flow regime 
examined. This is expected for all sonic-based calibration 
procedures, as the sonic performance in resolving the large 
scales improves with an increase in mean velocity (Kaimal 
and Finnigan 1994). Contrary, the jet-based calibrations 
demonstrate reduced errors on the lower mean wind speed. 
Errors of the field data vertical component, �w , appear to be 
the highest relative to the streamwise and longitudinal com-
ponents errors, arguably because of the declared lower accu-
racy of sonic provided vertical component due to blockage 
of the wind by the sonic base. The laboratory cases present 
the lowest delta values using the TJ2 method, as it is most 
similar to the selected GT , or TJ3.

The key takeaway from the delta error analysis is that 
the range of � is the same for all methods and presenting 
the results of each method separately further emphasizes 
that even among the commonly used methods, there are 
still variations in the predicted velocities. The small-scale 
reconstruction errors are expected to translate into errors in 
other calculated quantities such as length scales, dissipation 
rates, and turbulence intensities. Hence, some variability of 
these quantities between the calibration methods is expected 
and was analyzed in detail for all flow regimes examined 
here; for the conciseness of this paper we refer the reader to 
Goldshmid (2020).

The delta errors allowed examining the trends of small-
scale velocity fluctuations reconstruction differences 
between the various calibration methods. Next, we examine 
the spectral shapes of each flow regime examined in the 
laboratory; Fig. 10 presents the average spectral shapes of 
all minutes at the highest wind speed for each flow regime, 
separately for each velocity component. This qualitative 
analysis is used as a sanity check to confirm the sensed fluc-
tuations are representative of a turbulent flow. The spectra 
were computed averaging over one second windows, result-
ing in 1 Hz spectral resolution, and each curve represents a 
different calibration method. In the ideal case, all spectral 
curves in each flow regime should be identical, regardless 
of the calibration method. The clearly visible “bump” in the 
spectral shapes of the YGYC flow regime is attributed to 
the presence of the canopy; it is not seen in any of the other 
examined flows here. The blue −5∕3 line is placed at the 
same location in all figures to easily distinguish between 
the types of flows. The fact that there is a significant change 

Fig. 9  a–c Average delta error, � , for all calibration procedures exam-
ined here as a function of the mean streamwise velocity, U . All delta 
errors are with respect to the previously selected ground truth TJ3 . 
These are broken down by the flow regime examined a NGNC, b 
YGNC, and c YGYC. d The delta error for all three velocity compo-
nents with respect to the mean streamwise velocity in a representative 
hour at 9 am on May 27th, 2019
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in the average intensities between the flows indicates that 
the hotfilms can differentiate between the different flows 
examined using all examined calibration procedures. In 
practice, this is the key/critical point that is sought for in the 
experiments. Such ability to distinguish between drastically 
changing flow regimes, even if the actual values are recorded 
with some error, is crucial especially for field implementa-
tion where high variability of the conditions is expected and 
unavoidable.

The differences between the spectral shapes are more pro-
nounced in the smaller scales than in the larger scales. For 
the laboratory data, the small scales of the in situ calibrated 
lookup table method 

(
TI2, TI3

)
 and the jet calibrated poly-

nomial ( PJ3 ) seem to suffer from excessive noise, consist-
ently appearing more elevated than in the GT and the NN 
counterparts. Both the GT, SA3 and DA3 exhibit a similar 
shape in all three flow regimes and velocity components, 
with one exception: the u components in the YGYC flow. 

The DA3 might have been able to capture the dissipation 
range in the 2–3 kHz, where the GT and SA3 methods seem 
to have captured noise as their curves flatten horizontally at 
the high frequencies. As mentioned in the previous section, 
each NN model consists of 10 separate models whose final 
outputs are averaged. It was also observed that the SA3 had 
a larger range of variations between the outputs of the 10 
models, and DA3 had a much smaller range. Based on these 
findings we can recommend the DA3 approach for the cali-
bration automation of the combo probe.

Ideally, a well-trained NN model should only capture the 
coherence of a signal, excluding noise and artifacts. There-
fore, there is the possibility that the hotfilms are solving 
the larger scales more precisely than the sonic in the labo-
ratory experiments. Possible reason being a large acoustic 
fly path of the sonic relative to the height of the BL in the 
laboratory. Since we do not have any additional reference 
to compare with, such as PIV, no concrete conclusions can 

Fig. 10  Averaged power density spectral curves of the streamwise 
(column 1), longitudinal (column 2), and vertical (column 3) velocity 
components fluctuations of all data obtained at the highest flow rate 
of the NGNC (row 1), YGNC (row 2), YGYC (row 3) flow regimes. 

All blue − 5/3 lines are placed at identical location on all plots. The 
red lines are spectral data from the sonic, up to the trusted frequency 
limit
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be drawn here, and this issue should be examined further in 
future studies. Next, we will quantify the large-scale veloc-
ity fluctuations reconstruction deviations relative to those 
of the GT.

The vertical differences between the spectral shapes pre-
sented in Fig. 10 suggest that differences in reconstruction of 
the large-scale velocity fluctuations exist between the vari-
ous common calibration methods as well. It is worthwhile 
clarifying that the spectral shapes in Fig. 10 do not include 
the ad-hoc shift, as proposed by Kit and Liberzon (2016) as 
these results were obtained in the laboratory and had the jet 
calibration to compare with. Originally, we selected the most 
“trusted” method as the standard calibration method using 
the automatic calibrator and deducing the transfer function 
using the lookup table 

(
TJ3

)
 . Here, we will compare the 

absolute difference of the sonic provided large scales from 
those of the selected ground truth. Then we will compare 
how those differences relate to the outputs provided by the 
three NN-based calibration methodologies. This is to test 
whether the hotfilm can capture the large scales more accu-
rately than the sonic. If so, the correction that was previously 
suggested (Kit and Liberzon 2016) might no longer be nec-
essary. These normalized differences are:

and,

Figure 11 details the results per flow regime in the wind 
tunnel. Each point represents the ΔP values on the spectra 
derived from a single point up to the sonic highest trusted 
frequency (10). For consistency, the comparison here is 
made up to 2Hz since it is the highest trusted frequency of 
the sonic at the lowest mean speed examined in the wind 
tunnel, and each point in the scatter represents a single 
point from the spectra up to the highest trusted frequency. 
The comparison is only made with the NN-based methods 
because these were previously recommended to undergo a 
correction based on the sonic reading of the large scales (Kit 
and Liberzon 2016).

In the case the above discussed correction would be 
unarguably necessary, the cloud of points should have been 
densely stacked in the southeast corner of all figures. Since 
this is not the case, it is logical to conclude that the hotfilms 
resolve the large scales more accurately than the sonic. All 
methods fall close to the 1 ∶ 1 ratio line. We are, essentially, 
comparing the large scales of the sonic to the large scales 
of the NN derived signals that are based on the sonic data. 
The comparison and normalization of both are based on the 

(15)ΔPNN =

|||
PNN − PGTlab

|||
PGT

,

(16)ΔPSonic =

|||
PSonic − PGTlab

|||
PGT

.

GTlab large scales; these signals are calibrated using the jet 
and are unrelated to the sonic signals.

Since there are not many points that lie below the 1 ∶ 1 
line, it appears that the uncorrected NN large scale signals 
using the sonic data for calibration ultimately have smaller 
differences from the GTlab than the sonic raw large-scale 
velocity fluctuations signals. This suggests that the NN-
based calibration is more accurate than the sonic in recon-
structing the large-scale velocity fluctuations.

The presented tests were conducted under a range of 
acceptable uncertainty. The transfer function estimates are 
expected to vary up to a certain degree depending on the 
implemented calibration and the sensors averaging methods 
were. For example, the lookup table method using two or 

Fig. 11  The a NGNC, b YGNC, c YGYC flow regimes large scale 
normalized deviation of the NN methods results relative to those of 
the sonic. All compared against the selected GT dataset. The circles, 
squares and triangles represent the SH3, SA3, DA3 sets correspond-
ingly. The blue, orange, and yellow represent the u, v,w components 
correspondingly
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four sub probes exhibits some difference in their results. 
Although out of the scope of this work and planned to be 
addressed later, the jet calibration data used with the deep 
NN also demonstrated great performance and can be imple-
mented as a method for estimating the voltage to veloc-
ity transfer functions in laboratory studies because of its 
robustness.

In conclusion, the large to small scale performance of 
each calibration method was examined using both labora-
tory and field obtained data. All methods presented � value 
of the same range, supporting the validity of the proposed 
automated NN-based calibration procedure—DA3 . The most 
complex/extreme case examined in the laboratory included 
combining all three different flow regimes into one large 
dataset for the training of a single transfer function. In the 
actual field measurement, when the conditions change this 
much, a new model would be trained. This goes to show 
the robustness of the deep NN model and its capability to 
find the coherence even in highly variable flow conditions. 
The automation of the calibration procedure enables near 
real-time monitoring of fine-scale turbulent fluctuations in 
the field.

4  Conclusions

Prior to the combo, hotwire anemometry was rarely used in 
the field because of the need for cumbersome and frequent 
re-calibration and for constant re-alignment with the mean 
wind direction due to variability of environmental condi-
tions. The combo was previously shown to tackle these limi-
tations (Fernando et al. 2015; Kit et al. 2017; Goldshmid 
and Liberzon 2018, 2020) by combining the hotfilm probes 
with a low spatiotemporal resolution instrument—sonic, and 
implementing an NN based in situ calibration method. It is 
capable of continuously sensing the fine scales of turbulent 
fluctuations in the field with high accuracy. This study pre-
sented the most recent improvements made to the combo 
mechanical design and data processing procedures. The 
main findings of this study can be summarized as follows:

1. The new mechanical design overrides the restriction of 
the combo measurements at 120◦ range. Rigidly connect-
ing the hotfilms sensors to the sonic and rotating both 
now enables measurements of the flow at any angle of 
attack in a full 360◦ range.

2. To examine the durability of this design, the combo was 
deployed in an open sea environment for several days. 
This experiment confirmed that the combo operates 
properly and has the capability of operating continu-
ously without human intervention for days or weeks at 
a time. Although the data collection prior to this study 

did not require any human intervention, the calibration 
procedure itself was human decision based.

3. The automation of the combo calibration procedure 
removed potential human errors and enabled near real-
time monitoring of fine-scale turbulent fluctuations. The 
proposed automation procedure was tested on both the 
open sea dataset and inside a wind tunnel. A comparison 
of the new procedure results was made against tradi-
tional calibration methods using a low turbulence inten-
sity jet and a mechanical manipulator. The automated 
procedure included the use of a deep NN, instead of 
the previously used shallow NN, and the use of all low 
pass filtered data of steady ambient conditions for the 
training set. The automated calibration in the wind tun-
nel was used to represent an extreme case of significant 
variations in wind magnitude and turbulence character-
istics during the span of a measurement. Here the sonic 
provided large scale velocities fluctuations data of three 
different turbulent BL flow regimes were used together 
to train one transfer function for all flow regimes. The 
discussed results confirmed that the new NN training set 
approach allows combo to successfully produce meas-
urements over even extreme changes in the flow condi-
tions.

4. The deep NN appeared to have the capability of distin-
guishing between the signal and noise more efficiently 
at high scales and hence capture better the finest scales, 
as is evidenced in the examined spectral shapes of veloc-
ity field components fluctuations power density. They 
exhibited a continued dissipation range at much higher 
frequencies instead of the flattening observed by other 
methods. As for the field data, the results exhibited the 
same range of differences between the automated pro-
cedure using deep NN and the human-decision-based 
calibration method using shallow NN.

The automated training was introduced to minimize the 
avoidable human-based bias. Our results do not allow a con-
clusion regarding the ultimately most accurate method, but 
we can say with certainty that the accuracies achieved by the 
commonly used and the newly proposed methods are compa-
rable. Meaning the combo can and should be implemented 
in the field and the automated calibration procedure using 
deep NN might be preferable because of the implementation 
simplicity. All NN-based calibration methods in this study 
were trained using hour-long training sets for the purpose 
of comparison with the previous method. Datapoints with 
a change in temperature or humidity greater than 10% were 
omitted. The 10% threshold was arbitrarily selected to ensure 
that no outliers were present in the duration of the hour. 
Proper determination of these thresholds is needed in future 
studies and would require a detailed optimization procedure 
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that examines the dependence of the network performance 
on changes of these conditions.

The combined results of this study show that accurate 
measurements of atmospheric turbulent flows in the field 
are now more achievable than ever before. The new, and 
mechanically simpler, combo design makes this possible in 
all 360◦ . In the specific field site examined here, the previ-
ous configuration of the combo would have been sufficient 
to cover the entire range of mean wind direction but would 
have required a preliminary examination of the wind regimes 
prior to the installation of the combo. Studies in various 
environments would benefit from this addition to the meas-
urement capability range. A couple of examples include 
slope and valley flows, where the flow direction ranges in 
at least 180◦.

The goal of any turbulent flow monitoring is to identify 
relative changes in turbulent properties, regardless of the 
selected procedure for estimating the voltage-to-velocity 
transfer function. The combo with the automated calibra-
tion procedure has shown to manage this task appropriately. 
This high spatiotemporal resolution anemometer is useful 
for many types of field studies across wide range of environ-
mental conditions, both steady and highly variable in terms 
of mean flow parameters and turbulence characteristics. The 
automated procedure enables almost real-time processing, 
which would provide stationary meteorological stations the 
ability to monitor real-time fine-scale turbulence statistics. 
This is especially useful with changing field conditions and 
consequently with non-stationary measuring stations, such 
as probes placed on moving platforms that may include mov-
ing vehicles, boats, and drones that can be used to scan the 
entire BL. While tackling the problem of changing mean 
wind direction and magnitude at moving platforms, the 
problem of distinguishing between the platform vibrations 
and those of the turbulent flow itself will have to be solved 
separately.

Appendix

The curves in the figure below indicate the mean square 
error (MSE) evolution in training of an example NN model 
while using the DA3 method. The low training, validation, 
and test set errors indicate that no bias or variance is cap-
tured in the model (Fig. 12).
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